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Abstract. The main goal of this paper is to compare the relative impor-
tance of destruction by tides vs. destruction by mergers, in order to assess
if tidal destruction of galaxies in clusters is a viable scenario for explain-
ing the origin of intracluster stars. We have designed a simple algorithm
for simulating the evolution of isolated clusters. The distribution of galax-
ies in the cluster is evolved using a direct gravitational N -body algorithm
combined with a subgrid treatment of physical processes such as merg-
ers, tidal disruption, and galaxy harassment. Using this algorithm, we have
performed a total of 148 simulations. Our main results are:

• destruction of dwarf galaxies by mergers dominates over destruction by
tides, and

• the destruction of galaxies by tides is sufficient to explain the observed
intracluster light in clusters.

Key words. Cosmology—galaxies: clusters, dwarfs, interactions—
methods: numerical.

1. Introduction

Dwarf galaxies (DGs) are defined as low-mass (107–109 M�) galaxies having an abso-
lute magnitude fainter than MB ∼ −16 mag, or MV ∼ −18 mag (Grebel 2001), have
low surface brightness and low metallicity. They are the most numerous galaxies occur-
ring in the Universe. A majority of galaxies in the local group are DGs (Mateo 1998).
DGs have been seen in observations of nearby galaxy clusters, Coma (Thompson &
Gregory 1993; Bernstein et al. 1995), Virgo (Sandage et al. 1985; Lee et al. 2003),
Fornax (Bothun et al. 1991; Drinkwater et al. 2003), Centaurus (Mieske et al. 2007),
and several galaxy groups (Karachentseva et al. 1985; Côté et al. 1997; Cellone &
Buzzoni 2005).

The diffuse intracluster light (ICL) observed in clusters of galaxies is produced by
stars, usually of low surface brightness, located outside individual galaxies but within
the cluster and associated with the cluster potential. The first mention of IC light was
made by Zwicky (1951). Since then, several observations have detected diffuse ICL in
many galaxy cluster systems (Arnaboldi 2004; Gonzalez et al. 2005; Mihos et al. 2005;

1



2 Paramita Barai et al.

Krick et al. 2006). The idea of IC globular clusters was proposed by West et al.
(1995). Later on, distinct IC stars were observed (Arnaboldi et al. 2003; Gal-Yam
et al. 2003; Gerhard et al. 2005), including globular clusters, red giant stars, and SN
Ia. The origin and evolution of the IC stars and diffuse ICL are not well constrained at
present.

The most popular formation mechanism of IC population is stripping of stars from
cluster galaxies by gravitational tides, fast encounters between galaxies, and tidal
interactions between colliding and merging galaxies (Miller 1983; Gregg & West
1998). From observations and cosmological simulations, at z = 0 at least 10–20% of
all stars in a cluster are unbound to any one galaxy (e.g., Aguerri et al. 2005). The
fraction of stars in ICL increases with mass of the clusters, and increases with density
of environment: from loose groups (<2%, Castro-Rodriguez et al. 2003), to Virgo-like
(10%, Feldmeier et al. 2004b; Zibetti et al. 2005) and rich clusters (∼20% or higher,
Tyson & Fischer 1995; Feldmeier et al. 2004a; Krick & Bernstein 2007). In the cores
of dense and rich clusters (like Coma) the local ICL fraction can be as high as 50%
(Bernstein et al. 1995).

In numerical studies of ICL production in clusters, there is always a trade-off
between having good resolution or good statistics. Napolitano et al. (2003); Willman
et al. (2004); Sommer-Larsen et al. (2005), and Rudick et al. (2006) simulate either
one cluster or a few clusters, so even though their simulations have high resolution,
they have poor statistics, in the sense that the cluster(s) they are simulating might not
be representative of the whole cluster population. On the other extreme, Murante et al.
(2004) simulate a very large cosmological volume, containing a statistically significant
sample of clusters. Such large simulations, however, cannot resolve the scale of dwarf
galaxies. Our goal is to have it both ways: achieving good statistics while resolving
the processes responsible for destroying dwarf galaxies. This is achieved by combin-
ing large-scale cosmological simulations with a semi-analytical treatment of mergers
and tidal disruption.

The main objective of our present work is to determine if DGs in clusters are more
prone to destruction by tides or to destruction by mergers. This determination is then
used to predict the contribution of DGs to the origin of IC stars. The DGs in a cluster
can be tidally disrupted (by the field of a more massive galaxy or by the background
halo) or the DGs can be destroyed when they merge with another galaxy. The impact
of these two destruction mechanisms on the ICL is radically different. In the case of
tidal disruption, the process contributes to IC stars in the cluster. In the case of merger,
the DG is absorbed by a more massive galaxy, and there is essentially no contribution
to the IC stars.

We perform numerical simulations of isolated clusters of galaxies, in order to exam-
ine which method of dwarf galaxy destruction is dominant, and how the process
depends on environmental factors. We identify six possible outcomes for our simulated
galaxies:

(1) the galaxy merges with another galaxy,
(2) the galaxy is destroyed by the tidal field of a larger galaxy but the fragments

accrete onto that larger galaxy,
(3) the galaxy is destroyed by tides and the fragments are dispersed in the intracluster

medium (ICM), contributing to the intracluster light,
(4) the galaxy is destroyed by the tidal field of the background halo,



Dwarf Galaxies in Clusters 3

(5) the galaxy survives to the present, and
(6) the galaxy is ejected from the cluster.

We designed a simple algorithm to follow the evolution of galaxies in an isolated
cluster. The gravitational interaction between galaxies is calculated by a direct N -body
algorithm. The other physical mechanisms governing the possible outcomes (merg-
ers, tidal disruption, accretion, etc.) of the simulated galaxies are treated as ‘subgrid
physics’, and are incorporated in the algorithm using a semi-analytical method. In the
present work, we use this algorithm to simulate the evolution of isolated galaxy clus-
ters, i.e., we assume that the cluster has already formed with its constituent galaxies in
place, and it is neither accreting nor merging, except in section 4.7 where we consider
accretion.

The remainder of this paper is organized as follows: In section 2, we outline the
numerical model for our galaxy clusters. The methodology of our simulations is
described in section 3. The results are presented in section 4. We discuss the implica-
tions of our main goals in section 5, and give our conclusions in section 6.

2. The numerical method

2.1 The basic PP algorithm

We treat the system as an isolated cluster consisting of N galaxies of mass mi , radius si ,
and internal energy Ui , orbiting inside a background halo of uncollapsed dark matter
and gas. We assume that the halo is spherically symmetric, and its radial density profile
ρhalo(r) does not evolve with time (hence, we are neglecting infall motion that would
result from cooling flows). Furthermore, we assume that the halo is stationary: it does
not respond to the forces exerted on it by the galaxies, and therefore its center remains
fixed at a point that we take to be the origin. In section 4.7, we relax the assumption
of an isolated cluster, and consider mass growth of the cluster with time, which can
happen due to accretion.

We represent each galaxy by one single particle of mass mi . The ‘radius’ si of the
galaxy and its ‘internal energy’ Ui are internal variables that only enter in the treatment
of the subgrid physics described in section 2.4. Our motivation for using this approach
is the following: To simulate the destruction of dwarf galaxies by tides, it would seem
more appropriate to simulate each galaxy using many particles. Supposing, however,
that it takes at least 100 particles to properly resolve a dwarf galaxy experiencing tidal
destruction, as the galaxies in our simulations cover three orders of magnitude in mass,
the most massive ones would be represented by 100,000 particles. Even though the
dwarf galaxies are much more numerous than the massive ones, the total number of
particles would be above one million. This raises the following issues:

• With the use of tree codes, an N = 106-particle simulation is not considered
prohibitive anymore. However, (1) our model has several free parameters, so we
have a full parameter-space to study, and (2) one single cluster is not statistically
significant, so for each combination of parameters we need to perform several
simulations. For this paper, we performed 148 simulations. Doing 148 million-
particle simulations would start to be computationally expensive.

• We could use unequal-mass particles, so that the most massive galaxies would
not be represented by large number of particles. This is usually not a good idea.
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N -body simulations with particles having widely different masses are known to
suffer from all sorts of instability problems, which often require special algorithms
to deal with. The approach we are considering here is more practical.

• In this paper, we consider isolated clusters. In a forthcoming paper (Brito et al.
2008), we will present simulations of a cosmological volume containing at least
100 clusters. The number of particles would then reach 100 million, and we would
still need to explore the parameter space. This would be computationally very
expensive. We will solve this problem using single-particle galaxies combined
with a treatment of subgrid physics. The simulations presented in this paper can
be seen as a test-bed for this approach.

The relatively small number of particles in our simulations (typically less than
1000) enable us to use a direct, particle–particle (PP) algorithm, which is the simplest
of all N -body algorithms. We took a standard PP code, which evolves a system of
N gravitationally interacting particles using a second-order Runge–Kutta algorithm.
We modified the original algorithm to include the interaction with the background
halo, and we added several modules to deal with the subgrid physics. In this modified
algorithm, the number of particles N can vary, as they merge, are destroyed by tides,
or escape the cluster.

2.2 Gravitational interactions

The acceleration of particle i (or galaxy i) is given by

ai = −G
∑

j �=i

mj (ri − rj )
(|ri − rj |2 + ε2

)3/2 − GMhalo(ri)ri

(r2
i + ε2)3/2

, (1)

where ri and rj are the positions of particles i and j , respectively, mj is the mass
of particle j , Mhalo(ri) is the mass of the background halo inside r = ri , G is the
gravitational constant, and ε is the softening length. This assumes that the background
cluster halo is spherically symmetric and centered at the origin. In our PP algorithm,
this expression is evaluated directly, by summing over all particles j �= i. The softening
length ε is chosen to be smaller than the initial radius of the smallest galaxies (see
section 3.2 for the determination of the initial radius). Our results are not sensitive to
the value of ε, as long as it is smaller than the radii of the smallest galaxies.

We evolve the system forward in time using a second-order Runge–Kutta algorithm.
The timestep �t is calculated using:

�t = min
i

(�t)i , (�t)i = min

[
ε

|vi | ,
(

ε

|ai |
)1/2

]
, (2)

where vi is the velocity of particle i, and we take the smallest value of (�t)i to be the
timestep �t .

2.3 The cluster halo density profile

We consider two different types of density profile of the background halo of a cluster,
ρhalo(r): the β profile, and the NFW profile.
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In the first case, we assume that the dark matter in the background halo follows a
similar density distribution as the observed intracluster gas. A single β-model (isother-
mal) density profile is used for the gas (e.g., King 1962; Cavaliere & Fusco-Femiano
1976; Makino et al. 1998),

ρgas(r) = ρ0

[
1 +

(
r

rc

)2
]−3β/2

, (3)

where ρ0 is the central density and rc is the core radius. The values of ρ0 , rc and β

are taken from Piffaretti & Kaastra (2006), which give the gas density parameters for
16 nearby clusters. The halo density is then obtained by scaling the gas density with
the universal ratio of matter (dark + baryonic) to baryons, ρhalo = ρDM + ρgas =
ρgas�M/�b, where �M and �b are the present matter (baryons+dark matter) density
parameter and baryon density parameter, respectively. This assumes that the cluster
baryon mass fraction follows the cosmic value of �b/�M , which is expected to be
generally true (e.g., White et al. 1993; Ettori 2003), although precise estimations of
cluster baryon content have shown deviations from the universal value (Gonzalez et al.
2007, and references therein).

In the second case, we consider that the distribution of gas and dark matter in the
background halo both follow analytical models of the dark matter density having a
functional form:

ρDM(r) = ρs

(r/rs)(1 + r/rs)2
(4)

(Navarro et al. 1997). Here, ρs is a scaling density and rs is a scale length. The NFW
profile is often parametrized in terms of a concentration parameter c. The parameters
ρs and rs are then given by:

ρs = 200c3ρcrit(z)

3[ln(1 + c) − c/(1 + c)]

= 25H 2(z)c3

πG[ln(1 + c) − c/(1 + c)]
, (5)

rs = r200

c
, (6)

where ρcrit(z) = 3H 2(z)/8πG is the critical density at formation redshift z, and r200,
the virial radius, is the radius of a sphere whose mean density is 200ρcrit (200 times
the critical density of the Universe at the epoch of formation). After scaling, the halo
density profile is ρhalo = ρDM�M/(�M − �b).

Once we have chosen a particular density profile, the density is integrated to get the
background cluster halo mass as:

Mhalo(r) =
∫ r

0
4πx2ρhalo(x)dx. (7)

This is the mass that enters in the last term of equation (1). Since the density profiles we
consider do not have an outer edge where ρhalo = 0, we truncate the cluster background
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halo at a maximum halo radius Rmax
halo = 5 Mpc. Equation (7) is then solved numerically,

to build an interpolation table for r in the range
[
0, Rmax

halo

]
that is then used by the code.

2.4 The subgrid physics

As mentioned in section 1, there can be six possible physical outcomes for our simu-
lated cluster galaxies. In the following subsections, we describe the associated subgrid
physics for each mechanism we use in our simulations. The possible outcomes are:

• the galaxy merges with another galaxy (section 2.4.1),
• the galaxy is destroyed by the tidal field of a larger galaxy but the fragments

accrete onto that larger galaxy (section 2.4.4),
• the galaxy is destroyed by tides of a larger galaxy and the fragments are dispersed

in the intracluster medium (section 2.4.3),
• the galaxy is destroyed by the tidal field of the background halo (section 2.4.3),
• the galaxy survives to the present (i.e., it is not destroyed by any process), and
• the galaxy is ejected from the cluster (section 2.4.5).

We describe our approach of simulating galaxy harassment in section 2.4.2.

2.4.1 Encounter: Merger

We simulate a pair of galaxies colliding (or synonymously, having an encounter) and the
further consequences (e.g., merging) in the following way. An encounter is accounted
for when two galaxies i and j , of radii si and sj , overlap such that the center of the galaxy
j is inside the galaxy i. Numerically the criterion is rij < si , where rij = |ri −rj | is the
distance between the centers of the galaxies. If vi and vj are the velocities of galaxies
i and j , the center of mass velocity of the pair is vcm = (mivi + mj vj )/(mi + mj).
The kinetic energy in the center-of-mass rest frame is:

Kij = 1

2
mi |vi − vcm|2 + 1

2
mj |vj − vcm|2. (8)

The gravitational potential energy of the pair is:

Wij = −Gmimj

rij

. (9)

Even though we are treating each galaxy as a single particle, in reality a galaxy is a
gravitationally bound system with an internal kinetic energy and a potential energy, and
these energies must be included in the total energy of the interacting pair of galaxies.
Considering a galaxy as a bound virialized system its internal energy is:

Ui = Upotential + Ukinetic = Upotential

2
= −ζGm2

i

2si

, (10)

where ζ is a geometrical factor which depends on the mass distribution in the galaxies.
Throughout this paper, we assume ζ = 1 (see Appendix).

We then compute the total energy of the galaxy pair (in the center of mass frame) as:

Eij = Kij + Wij + Ui + Uj . (11)
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If Eij ≤ 0, i.e., the system is bound, we then allow the galaxies to merge to form
a single galaxy of mass mmerge = mi + mj . To compute its radius, we assume that
energy is conserved, hence the total energy Eij in the center-of-mass rest frame is all
converted into the internal energy of the merger remnant. Its radius is then computed
from equation (10),

smerged = −ζGm2
merge

2Umerge
= ζG(mi + mj)

2

2|Eij | . (12)

The position and velocity of this merged object are set to those of the center-of-mass
values of the galaxy pair before merger, in order to conserve momentum.

2.4.2 Encounter: Galaxy harassment

In a high-speed encounter the two interacting galaxies come into contact for a brief
amount of time. The galaxies might survive a merger or tidal disruption, but the
encounter adds some internal energy into them, making them less bound. We refer
to this process as Galaxy Harassment. This process has been originally suggested as
a possible explanation for the origin of the morphology–density relation in clusters
(Moore et al. 1996). We incorporate galaxy harassment in our algorithm by increas-
ing the radius (or the internal energy) of a galaxy when it experiences a non-merger
encounter. This enlargement makes a galaxy more prone to tidal disruption at the next
encounter.

In equation (11), if Eij > 0, i.e., the system is not bound, then the galaxies in our
simulation do not merge in the collision. Rather a part of the kinetic energy of the
galaxies is converted into internal energy, making the collision inelastic. We assume
that an equal amount of energy is transfered to each galaxy. Denoting the energy
transfered as �E, the kinetic energy of the pair decreases by �E, while the internal
energy of each galaxy increases by �E/2. We assume:

�E

2
= η min(|Ui |, |Uj |) , (13)

where η is an energy transfer efficiency whose value is taken as η = 0.2. The internal
energies of the two galaxies after the encounter are U after

i = U before
i + �E/2 and

U after
j = U before

j + �E/2, respectively. By choosing η < 1, we are ensuring that the
internal energy of each galaxy remains negative, that is, the transfer of energy does
not unbind the galaxies. We recalculate the velocities vi and vj after collision while
conserving momentum, assuming that only the magnitudes of velocity change, the
directions remaining the same. We recalculate the size of each galaxy in the pair using
equation (12),

safter
i = ζGm2

i

2|U after
i | , safter

j = ζGm2
j

2|U after
j | . (14)

While allowing a size increase of the galaxies according to equations (12) and (14),
we also considered a size cut-off. We assumed that the galaxies could grow only up to a
maximum size given by the size of the largest galaxy at the beginning of the simulation.
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Figure 1. Calculation of the effects of tides caused by a galaxy of mass mi on a galaxy of mass
mj and radius sj . The two largest arrows show the gravitational accelerations caused by galaxy i;
the two smallest arrows show the accelerations caused by galaxy j . See section 2.4.3 for details.

2.4.3 Tidal disruption: Intracluster stars

We consider two possible sources of external gravitation for the tidal disruption of
a galaxy j : another galaxy i, or the background cluster halo. The tidal force on a
galaxy due to the gravitational field of the external source is meaningful only if the
galaxy lies entirely on one side of the external source, when the tides are directed radi-
ally outwards tending to tear apart the galaxy. Our calculation of the tidal field caused
by a galaxy i of mass mi is illustrated in Fig. 1. The galaxies i and j are separated
by a distance rij . We calculate the resultant fields between two diametrically oppo-
site points inside galaxy j , located at a radial distance d ≤ sj along the line joining
the centers of the two galaxies. The two small and two large arrows in Fig. 1 indi-
cate the gravitational field (or acceleration) at the opposite points caused by galaxy j

(self-gravity) and by galaxy i (external source of gravitation), respectively. The mag-
nitude of the tidal field is given by the difference between the gravitational field caused
by galaxy i at the two opposite points,1

a
galaxy
tide = Gmi

(rij − d)2
− Gmi

(rij + d)2
. (15)

The gravitational field caused by galaxy j (two small arrows in Fig. 1) is directed
radially inwards and acts opposite to the tides, tending to keep the galactic mass inside
radius d intact. The difference between that self-gravitational field at the two opposite
points is:

agrav = 2Gmj(d)

d2
, (16)

where mj(d) is the mass of galaxy j inside radius d. When a
galaxy
tide = agrav, then the

tides will exceed self-gravity at radii larger than d, while self-gravity will exceed the
tides at smaller radii. Thus the layers of galactic mass located between radii d and sj

would become unbound, while the ones located inside radius d would remain bound.
Hence, the galaxy would be partly disrupted. In our code, we simplify things by using
an ‘all-or-nothing’ approach. A galaxy is either totally disrupted, or not disrupted at
all. We consider that a galaxy is disrupted if half of its mass or more becomes unbound.
If we assume an isothermal sphere density profile (as in Appendix), then the half-mass

1This reduces to the well-known form a
galaxy
tide ∝ d/r3

ij in the limit d � rij , but we do not
make this approximation here.
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radius is given by d = sj /2. This is the value of d we use in equations (15) and (16).
The criterion of tidal destruction then becomes a

galaxy
tide (d) ≥ agrav(d), with d = sj /2.

We also consider tidal disruption by the background cluster halo, but only if rj > sj

(that is, the galaxy does not overlap with the center of the halo). The magnitude of
tidal field due to the cluster halo is:

ahalo
tide = GMhalo(rj − d)

(rj − d)2
− GMhalo(rj + d)

(rj + d)2
, (17)

where Mhalo(r) is given by equation (7). If ahalo
tide (d) ≥ agrav(d), with d = sj /2, galaxy

j is tidally destroyed by the gravitational field of the halo.
When galaxy j is considered to have been tidally destroyed by another galaxy i,

the fragments of the disrupted galaxy might accrete onto galaxy i (section 2.4.4), or
they might be dispersed into the ICM when Eij > 0 (Eij being the total energy of the
galaxy pair given by equation 11). For tidal destruction by the cluster halo the disrupted
fragments are always dispersed into the ICM. In both cases, the destroyed galaxy is
removed from the list of existing particles. The code keeps track of the amount of
mass added to the ICM (in the form of IC stars) by tidal disruption. This quantity is
initialized to zero at the beginning of the simulation, and every time a galaxy is tidally
destroyed with its fragment dispersed, the mass of that galaxy is added up to the total
mass added to the ICM.

2.4.4 Tidal disruption: Accretion

We consider a possibility of accretion of the fragments of a tidally disrupted galaxy
onto the galaxy causing the tides. This happens for the case of tidal disruption due to
galaxies only (if the disruption is caused by the background cluster halo, the fragments
are always dispersed as IC stars). This situation occurs when the conditions a

galaxy
tide >

agrav and Eij ≤ 0 are both satisfied (see section 2.4.3). The tidally disrupted galaxy
accretes onto the more massive galaxy. The mass of the bigger galaxy increases from
mi to mi + mj . Thus a tidal disruption followed by accretion is similar to a merger
(section 2.4.1), but these events are counted separately.

2.4.5 Ejection

When a galaxy ventures at distances larger than the cluster halo truncation radius
Rmax

halo (see section 2.3), we consider that this galaxy has escaped from the cluster, and
we remove it from the list. If we kept that galaxy, it might eventually return to the
cluster. But in reality the universe contains many clusters, and a galaxy that moves
sufficiently far away from one cluster will eventually feel the gravitational influence
of other clusters, something that our algorithm, which simulates an isolated cluster,
does not take into account. As we shall see, the ejection of galaxies from a cluster is
quite uncommon in our simulations.

3. The simulations

3.1 Cosmological model

We consider a 
CDM model with the present matter density parameter, �M = 0.241,
baryon density parameter, �b = 0.0416, cosmological constant, �
 = 0.759, Hubble
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constant, H0 = 73.2 km s−1Mpc−1 (h = 0.732), primordial tilt, ns = 0.958, and CMB
temperature, TCMB = 2.725 K, consistent with the results of WMAP3 (Spergel et al.
2007). Even though the simulations presented in this paper are not ‘cosmological’
(we simulate isolated, virialized clusters), the particular choice of cosmological model
enters the picture twice: in the determination of the radii of galaxies (see next section),
and in the calculation of the elapsed time between the initial and final redshifts of the
simulation.

In each simulation a cluster is evolved from z = 1 to the present (z = 0). We
assume that the cluster will not experience any major merger during this period, and
that, therefore, it is a good approximation to treat it as isolated. For our 
CDM model,
this represents a total evolutionary time of 7.63 Gyr.

3.2 Initial conditions

To set the initial conditions of our simulations, we need to determine the initial mass
m, radius s, position r, and velocity v of each galaxy. To determine the mass, we first
assume that the luminosities of galaxies are distributed according to the Schechter
luminosity function (Schechter 1976),

φ(L)dL = φ∗
(

L

L∗

)α

e−L/L∗ dL

L∗ . (18)

Here we use L∗ = 3.097 × 1010 L� (corresponding to absolute magnitude M∗
bJ

=
−20.07), and α = −1.28, which is appropriate for galaxies located in clusters (De
Propris et al. 2003). This luminosity function spans over −22.5 < MbJ

< −15. While
it might be reasonable to assume fixed values of L∗ and α, the value of φ∗ most
likely varies amongst clusters. So we normalize equation (18) by imposing that, in
each cluster, there are N0 galaxies with luminosities L > L0. We use N0 = 25,
and L0 = 0.2L∗ (corresponding to Mb = −19) (Lewis et al. 2002). We select the
luminosities using a Monte Carlo rejection method. We then assume a constant mass-
to-light ratio ϒ = 193 h M�/L� = 73 (Brainerd & Specian 2003), and convert
the luminosities to masses. The Schechter function spans up to a maximum mass
Mmax = 220 × 1011M�. To generate the dwarf galaxies, the same Schechter function
is extrapolated up to a minimum mass Mmin = 1 × 109M�.

We take the radius s of each galaxy to be equal to the virial radius r200 (radius
containing matter with 200 times the mean density of the Universe at the epoch of
galaxy formation) corresponding to the galaxy mass m = M200 using:

M200 = 800π

3
r3

200ρ̄(1 + zcoll)
3. (19)

Here, ρ̄ = ρcrit�M = 3H 2
0 �M/8πG is the mean matter density in the present universe,

and zcoll is the redshift of collapse when the galaxy formed. To obtain zcoll, we use a
simple spherical collapse model. First, by filtering the power spectrum for our 
CDM
model, we calculate the standard deviation σ(m) of the linear density contrast δ =
(ρ − ρ̄)/ρ̄ at the mass scale m. The distribution of the values of δ is then given by a
Gaussian,

P(δ) ∝ exp

(
− δ2

2σ 2

)
. (20)
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We pick randomly a present density contrast δ0 = δ(z = 0) from this distribution,
using a Monte Carlo rejection method, and solve the following equation to get the
collapse redshift zcoll,

�c = δ0
δ+(zcoll)

δ+(0)
, (21)

where δ+(z) is the linear growing mode (for 
 �= 0 models, see, e.g., Martel 1991).
Here, �c = 3(12π)2/3/20 = 1.686 is the overdensity predicted by linear theory at
recollapse. In the Monte Carlo method, we ensure that the galaxy collapse redshift
is higher than z = 1, the redshift at which the cluster is considered to have been
assembled (section 3.1), i.e., zcoll > 1. We solve this equation numerically for zcoll, and
substitute the solution in equation (19), which we then solve to get the radius s = r200.

To determine the locations of galaxies inside a cluster, we assume that their distri-
bution is isotropic (in a statistical sense). We can therefore choose the spherical coor-
dinates (θ, φ) of each galaxy randomly, using φ = 2πXφ , and cos θ = 2Xθ −1, where
Xφ and Xθ are random numbers drawn from a uniform deviate between 0 and 1. We still
need to determine the radial co-ordinate r . Using the CNOC cluster survey, Carlberg
et al. (1997) showed that the radial mass density ρ(r) of matter and the radial num-
ber density ν(r) of galaxies are roughly proportional to each other, where both ρ(r)

and ν(r) are approximated by NFW profiles. Girardi et al. (1998) found that the halo
mass follows the galaxy distribution in clusters, using a β-model for the halo/galaxy
volume density profile. We assume that this proportionality holds for all clusters, and
we generalize it to all the density profiles we use. Thus, the assumed background halo
mass density profile (equations 3 and 4) gives us ν(r). We can then select the initial
distances r from the cluster center using again a Monte Carlo rejection method. Since
the masses and locations of the galaxies have been determined separately, we need
to pair them, i.e., for each selected location, to decide which galaxy goes there. We
do expect the most massive galaxies to reside near the center of the cluster. However,
low-mass galaxies are not all located at large radii, and some of them might be located
in the central region of the cluster as well. Indeed, if the galaxies in the central region
were all massive, it would be impossible to reproduce the desired number density pro-
file ν(r) and not have the galaxies overlap.

To prevent any overlap, we locate the galaxies as follows: We first position the most
massive galaxy at the center of the cluster. Then we locate the next seven most massive
galaxies between radii R0 and 2R0, where R0 is three times the radius of the most
massive galaxy. We then locate the next 19 most massive galaxies between radii 2R0

and 3R0. Finally, the remaining galaxies are located randomly between radii 0 and
3R0. During the process we check that the galaxies do not overlap, by ensuring that
the distance between the edges of two galaxies is greater than the radius of the larger
galaxy, i.e., rij − si − sj > max(si, sj ). In the process of locating a galaxy, if this
criterion is not satisfied, we simply reject that location and generate a new one.

After assigning the masses, radii, and positions of all the galaxies, we determine the
velocity of each galaxy. We consider the velocity a galaxy would have if it were in a
perfect circular orbit at radius r ,

vcirc(r) =
[

G

r

(
Mhalo(r) +

∑

j, rj <r

mj

)]1/2

, (22)



12 Paramita Barai et al.

Figure 2. Initial conditions for run A12. Top panel: initial conditions at z = 1. The solid circles
indicate the virial radii of galaxies. The large circle is the maximum distance r = 3R0 = 2.08 Mpc
from the cluster center. Lower left panel: same as top panel, with symbols rescaled to optical
diameter of real galaxies. Bottom right panel: enlargement of the central (0.6 Mpc)2 (box on
lower-left panel).

where the sum only includes galaxies inside radius r . The norm of the velocity is chosen
by giving a random 10% deviation to the circular velocity, i.e., v = vcirc(1 + 0.1Xv),
where Xv is a random number between −1 and 1. For the direction of the velocity,
we follow a similar random angle generation technique as we did for the positions of
galaxies.

Figure 2 illustrates the initial conditions for one of our simulations (run A12). The
top panel shows the cluster at z = 1. The large circle represents the maximum distance
3R0 within which the galaxies are located initially. Each dot represents a galaxy, with
the most massive one located in the center. Even though massive galaxies tend to be
larger, there is no direct correspondence between the masses and radii because of the
dependence on zcoll in equation (19), whose determination involves a Monte Carlo
method.

Visually, this looks quite different from the optical pictures of actual clusters like
Virgo. This is because each dot has a radius s equal to the virial radius r200, that can
exceed the optical radius by an order of magnitude. In the bottom left panel of Fig. 2,
we show the same cluster, with all the dots rescaled in size so that the angular diameter
of the central galaxy is equal to 8.3′ at a distance of 16.8 Mpc, which is the observed
optical diameter of M87. The bottom right panel shows a zoom-in of the central cluster
region. It looks qualitatively similar to pictures of the central region of Virgo.

4. Results

We started by performing 10 series of simulations, for a total of 148 simulations. Table 1
summarizes the characteristics of each series. The first 2 columns show the series name
and the number of runs, respectively. The slope of the Schechter luminosity function
at z = 1 (used to generate the initial conditions) is listed in column 3. Columns 4 to 8
give the characteristics and relevant parameter values of the background cluster halo
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Table 1. Series of simulations.

ρ0 , ρs

Series Runs αstart Profile β [g cm−3]
(col. 1) (col. 2) (col. 3) (col. 4) (col. 5) (col. 6)

A 16 −1.28 β-Virgo 0.33 8.14 × 10−26

B 17 −1.28 β-Virgo 0.33 8.14 × 10−26

C 17 −1.36 β-Virgo 0.33 8.14 × 10−26

D 16 −1.36 β-Virgo 0.33 8.14 × 10−26

E 16 −1.36 β-Perseus 0.53 7.27 × 10−26

F 16 −1.36 β-Perseus 0.53 7.27 × 10−26

G 10 −1.28 NFW · · · 2.35 × 10−25

H 14 −1.31 NFW · · · 2.35 × 10−25

I 10 −1.31 NFW · · · 2.35 × 10−25

J 16 −1.36 β-Perseus 0.53 7.27 × 10−26

rc , rs

c [kpc] cD Harassment Cluster-growth
(col. 7) (col. 8) (col. 9) (col. 10) (col. 11)

A · · · 3 × × ×
B · · · 3 × √ ×
C · · · 3 × √ ×
D · · · 3

√ √ ×
E · · · 28 × √ ×
F · · · 28

√ √ ×
G 5 200 × √ ×
H 5 200 × √ ×
I 5 200

√ √ ×
J · · · 28 × √ √

profile. Columns 9 and 10 indicate respectively whether a cD galaxy was included
in the cluster simulation, and whether galaxy harassment was included as part of the
subgrid physics. Column 11 shows if we included cluster mass growth of the simulated
cluster.

4.1 Series A: Initial simulations

We performed an initial series of 16 simulations, using for the background
halo a β-profile with β = 0.33, a core radius rc = 3 kpc, and a central density
ρ0 = 8.14 × 10−26 g cm−3, which is appropriate for a cluster like Virgo (Piffaretti &
Kaastra 2006). For this series, we did not include galaxy harassment. Our results are
shown in Table 2. It shows the run number (column 1), and at the beginning of the
run, the total mass Mtotal in galaxies, in units of 1011 M� (column 2), the number of
galaxies Ntotal (column 3), and the Schechter luminosity function (equation 18) expo-
nent αstart (column 12). This exponent was obtained by performing a numerical fit to
the distribution of galaxy masses. Because the masses were determined from a Monte
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Carlo rejection method, the exponent can differ from the intended value α = −1.28
in equation (18) and listed in Table 1, but the deviations are small. Averaging over all
runs, we get αstart = −1.280 ± 0.020.

Columns 4–8 in Table 2 show the number of galaxies Nmerge destroyed by mergers,

the number of galaxies N
gal
tides destroyed by tides caused by a massive galaxy, with the

fragments dispersed in the ICM, the number of galaxies Naccr destroyed by tides caused
by a massive galaxy, with the fragments being accreted onto that galaxy, the number
of galaxies Nhalo

tides destroyed by the tidal field of the background halo, and the number
of galaxies Neject ejected from the cluster, respectively. Column 9 shows the fraction
by numbers of galaxies fsurv that survive to the present.

We did not find a single occurrence of a galaxy destroyed by tides from the back-
ground halo, and the number of galaxies ejected is either 0 or 1. There are large vari-
ations in the other numbers from one run to the next, but some trends are apparent.
Typically, 50% to 60% of the galaxies are destroyed. Run A2 is an extreme case, with
78% of the galaxies being destroyed. The destruction of galaxies by mergers domi-
nates over the destruction by tides, by more than a factor of 2 except for run A7. If we
treat the cases of tidal disruption followed by accretion as being mergers, then mer-
gers dominate even more over tidal disruption. When galaxies are destroyed by tides,
the dispersion of fragments into the ICM always dominates over the accretion of frag-
ments onto the massive galaxy, but the ratio varies widely, from 114:7 in run A7 to
66:51 in run A8.

We evaluate the mass fraction fM of galaxies contributing to the intracluster stars,

fM = M
gal
tides + Mhalo

tides

Mtotal − Meject
, (23)

where the letter M refers to the mass in galaxies, rather than their number. The galactic
mass contribution to the ICM consists of galaxies destroyed by tides of another more
massive galaxy, and by tides of the background halo (though there are no such cases
in this series). Column 10 of Table 2 lists the values of fM.

We use a mass-dependent mass-to-light ratio of the galaxies having the form (
CDM
cosmological simulations of Yang et al. 2003)

〈
M

L

〉
(M) = 1

2

(
M

L

)

0

[(
M

M1

)−γ1

+
(

M

M1

)γ2
]

. (24)

The values of the free parameters are taken as M1 = 1011.27h−1M�, (M/L)0 =
134 hM�/L�, γ1 = 0.77, γ2 = 0.32, which are for the best-fitting model of Yang
et al. (2003) for concordance cosmology. The galaxy masses are converted to lumi-
nosities using the mass-to-light ratio. We then calculate the fraction fICS of the total
luminosity of the cluster that comes from intracluster stars,

fICS = L
gal
tides + Lhalo

tides

Ltotal − Leject
. (25)

The values offICS are listed in column 11 of Table 2. Again, there are large variations.
In particular, the fraction is very large for run A2, and very small for run A5. Averaging
over all runs, we get fICS = 0.271 ± 0.095 . Even though, in most cases about half the
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number of galaxies are destroyed, they tend to be low-mass galaxies, which explains
why fICS < 1 − fsurv, for all the runs.

The galaxies being destroyed by mergers and tides, or escaping are mostly low-
mass galaxies. This leads to a flattening of the galaxy mass distribution function.
We computed the best numerical fit to the Schechter luminosity function exponent α

(equation 18) for the surviving galaxies at the end of the simulations. This is listed as
αend in column 13 of Table 2. Averaging over all runs, we get αend = −1.206±0.040 .

4.2 Series B: Turning on harassment

We modified the algorithm to include the effect of galaxy harassment (see section
2.4.2), and rerun the calculations of series A with the same initial conditions. We
also added one more run, B17. The results are shown in Table 3, which follows the
same format as Table 2. Comparing with series A, the number of galaxies destroyed
by mergers is very similar, but the number of galaxies destroyed by tides tends to be
significantly higher. For instance, it goes from 67 to 94 for runs A4–B4, and from 64
to 86 for runs A15–B15. This is because, when a galaxy is subjected to harassment,
its binding energy is reduced, and it becomes more prone to experience tidal disrup-
tion later. But the number of tidal disruptions followed by accretion does not change
significantly. Hence, the additional, tidally-disrupted galaxies almost all contribute to
the intracluster stars. The values of fICS are therefore increased relative to series A.
The mean value is fICS = 0.288 ± 0.082 .

This is not significantly larger than for series A. The additional galaxies destroyed
are mostly low-mass galaxies. We also recalculated the best-fit Schechter exponent
α for the surviving galaxies at z = 0. The mean value for the runs in this series is
αend = −1.207 ± 0.048 .

Figure 3 shows the total galaxy counts in mass bins, obtained by combining all
the runs in series B, along with the fitting curves to a Schechter distribution function
(equation 18). The best fit Schechter exponent for the initial galaxy distribution (the
upper curve at z = 1) is α = −1.28, and for the final surviving galaxy distribution (the
lower curve at z = 0) is α = −1.20. These values of α were obtained by performing
the numerical Schechter function fits on the combined set of galaxies taken from all
the 17 runs in this series, which amounts to 8770 initial galaxies at z = 1 and 3614
surviving galaxies at z = 0.

Clearly from Fig. 3, the fit at z = 0 (lower curve) is excellent. This shows that, in
our simulations, a Schechter mass (luminosity) distribution function at z = 1 remains
a Schechter distribution all the way to z = 0, though half of the galaxies are destroyed.
Only the slope α changes with time.

4.3 Series C: Steeping up the mass distribution function

In the simulations of series A and B, the Schechter exponent α evolves from α � −1.28
at z = 1 to α � −1.21 at z = 0. Analyzing the combined set of galaxies of all the 17
runs in series B, we obtained the best fit Schechter exponent for the surviving galaxy
distribution at z = 0 as α = −1.20. This is a problem, since the value of α = −1.28
is based on observations of nearby clusters (De Propris et al. 2003), and should be
valid for clusters of galaxies at z = 0, whereas we used the same α = −1.28 to start
our simulations at z = 1, and it flattened to α = −1.20 at z = 0. Ryan et al. (2007)
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Figure 3. Mass distribution function for galaxies in series B, obtained by adding the numbers
for all runs. Results are plotted for initial 8770 galaxies at z = 1 (asterisks) and surviving
3614 galaxies at z = 0 (plus signs). The curves show the best fit of a Schechter distribution
function (equation 18), with α = −1.28 at z = 1 (upper curve), and α = −1.20 at z = 0 (lower
curve).

recently determined the luminosity function of a large sample of galaxies at z � 1,
and concluded that there is a steepening of the faint-end slope with redshift, which is
expected in the hierarchical formation scenario of galaxies. They obtained a value of
the faint-end slope α = −1.32 ± 0.07 at z = 1.

In our simulations we take into account this flattening of the luminosity function
over time as explained. The results of series A and B suggest that |α| decreases by
∼ 0.08 between z = 1 and z = 0. Using this as a guide, we performed a new series of
simulations, series C, using αstart = −1.36, with the hope that this value will evolve
toward something close to α = −1.28 at z = 0. The results are shown in Table 4. The
average values of α are αstart = −1.357 ± 0.021 and αend = −1.272 ± 0.050 .

A plot analogous to Fig. 3 showed that at z = 0, a Schechter distribution function is
still a good approximation to the mass distribution. The value of αend is close enough
to our target value of −1.28. So from now on, in all subsequent series with the β model
halo density profile, we will use an initial α of −1.36, as shown in Table 1. This value
is well inside the range obtained by Ryan et al. (2007).

Using a steeper galaxy distribution while still requiring that the clusters contain 25
galaxies with L > 0.2L∗ (initial conditions in section 3.2) results in the initial number
of galaxies being larger by a factor of about 2 (column 3 of Table 4). But the numbers
of galaxies destroyed by mergers and tides are also higher relative to series B. As a
result the trends are similar. In particular, mergers still dominate over tides by more
than a factor of 2.

The run C1 has a larger number of galaxies ejected from the cluster. This is because
the most massive galaxy, located at the center of the cluster, was particularly large. Its
radius was s = 385 kpc, compared to s < 300 kpc for the other runs. This increased
the value of R0 (see section 3.2) used for setting up the initial conditions. As a result,
more galaxies were located at larger radii, where they are more likely to escape. The
mean value of fICS for this series is fICS = 0.302 ± 0.088 .
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4.4 Series D: Adding a cD galaxy

A cD (central dominant) galaxy is a very bright supergiant elliptical galaxy with an
extended envelope (or a diffuse halo) found at the center of a cluster (Schombert 1988).
Several galaxy clusters have been found to have cD galaxies at their centers (e.g.,
Quintana & Lawrie 1982; Oegerle & Hill 2001; Jordan et al. 2004). We performed
some simulations by incorporating a cD galaxy in the clusters. Being the brightest and
most massive cluster galaxy, the mass of a cD is larger than the prediction of the normal
Schechter distribution function (equation 18). So we introduced the cD galaxy manu-
ally at our simulated cluster center. We adopted a luminosity of LcD = 10L∗, which is
a canonical value for a cD. Using a constant mass to light ratio (ϒ = 193 h M�/L�,
section 3.2), this corresponds to a cD galaxy mass of McD = 437.6 × 1011M�. When
we wanted a cD galaxy present in the simulation we changed the mass of the clus-
ter central galaxy (see sectoin 3.2) to the cD mass, McD. This allowed us to keep the
appropriate initial galaxy distribution for a cluster while incorporating a cD galaxy at
rest, located at the center.

We performed simulations by adding a cD galaxy to our Virgo-like cluster, and
called it series D. The results are listed in Table 5, from which certain trends are clear
after incorporating a cD galaxy in the simulation. The total galaxy mass increases since
a massive cD galaxy is being added. More prominent than in the previous series A, B,
and C, here galaxy mergers outnumber tides by factors ∼ 2–3, which go as high as 4
in run D12.

A striking new feature in cases incorporating a cD galaxy is the increase in the
number of accretions after tidal disruption by a galaxy, fully 1/4 of the galaxies being
acreted in run D5. Since in these accretions, the smaller galaxy is tidally destroyed
and is absorbed (or merged) by the massive galaxy (section 2.4.4), it appears, in our
simulated clusters, that in the presence of a cD galaxy the number of effective mergers
is very high.

The luminosity fraction imparted to ICS has decreased in all the runs, with a value as
low as 0.085 in run D6. To explain such a result, we note that the most massive central
galaxy (cD or otherwise) in our simulated cluster is never destroyed because of its large
mass. In an encounter, it is normally the lower-mass galaxy that gets destroyed. Also
the initial conditions of the most massive galaxy (at rest at the center, see section 3.2)
make it less likely to be destroyed by the tidal field of the halo. If the central galaxy
is a cD, a large mass fraction (as high as 38% in run D11) is locked into it, which can
never contribute to the ICS. So a smaller mass fraction is available to be transferred
to the ICS, which eventually leads to a decrease in fICS. The mean value of fICS for
series D is fICS = 0.161 ± 0.047.

4.5 Series E & F: Other β profiles

In the next two series of runs, we consider a different background halo. We use a
β-profile with β = 0.53, a core radius rc = 28 kpc and a central density ρ0 =
7.27×10−26 g cm−3, which is appropriate for a cluster like Perseus (Piffaretti & Kaastra
2006). Series E and F do not include, and include a cD galaxy, respectively (hence
series E should be compared with series C, and series F with series D).

The results for series E are shown in Table 6. The most notable feature is that
some galaxies are destroyed by the tidal field of the background halo, something
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that never happened with Virgo-like clusters. In order to explain such a behavior
we note that tidal disruption by the cluster halo generally occurs with galaxies at
a distance r < 1 Mpc from the cluster center. Our simulated Perseus-like cluster
halo mass profile rises more steeply than the Virgo-like cluster up to ∼1.7 Mpc,
making Perseus more massive in the inner regions. So a galaxy at a smaller dis-
tance, precisely at r < 1.7 Mpc, from the cluster center feels a larger tidal field
from a more massive halo, and is more prone to be disrupted in the Perseus-like
cluster.

The numbers of other galaxy outcomes are comparable for Perseus-like and Virgo-
like clusters, with mergers dominating over tides. The mean fICS for series E is fICS =
0.360±0.090. This fICS is somewhat larger than the Virgo-like cluster mean (series C).
This can be attributed to the non-zero tidal disruption by the cluster halo, resulting
here in a finite contribution to the ICS luminosity fraction.

Table 7 shows the results for series F, i.e., simulations of a Perseus-like cluster with a
cD galaxy at the center. Here few galaxies are destroyed by the tidal field of the cluster
halo, yet the number is smaller than in series E. It appears, then that the presence of
a cD galaxy reduces the number of tidal disruptions by the background halo, since
galaxies that would be destroyed by the tidal field of the central parts of the halo are
being destroyed by the cD galaxy instead.

Comparing the results for series D and series F (Virgo-like and Perseus-like clusters
with a cD galaxy,) the numbers – merger, galaxy-tide and accretion are similar. Series F
continues the trend of increased accretions when a cD galaxy is introduced. Also
series F has a smaller fraction of luminosity going to ICS. The mean fICS for series F is
fICS = 0.166±0.041 . This fICS is very similar to that of the relevant Virgo-like cluster
mean (series D). This implies that in the presence of a cD galaxy, the ICS luminosity
fraction is not so sensitive to the parameters of the β-model density profile.

4.6 Series G, H & I: NFW profile

We now consider a background halo described by a NFW profile (see section 2.3,
equation 4), with a scale radius rs = 200 kpc, and a concentration parameter c = 5.
These values are adopted from observational studies of galaxy clusters (Arabadjis et al.
2002; Pratt & Arnaud 2005; Maughan et al. 2007) where the authors found the best
fitting NFW model parameters for cluster mass profiles.

We do not necessarily expect the flattening of the Schechter mass function to be the
same for the NFW profile halo and the β-profile halo. So at first we performed a series
with α = −1.28 (see Table 1), and called it series G. The results are listed in Table 8.

To contrast an NFW-model cluster with a β-model cluster, series G should be
compared with series B, since these are with α = −1.28, include galaxy harassment,
and no cD galaxy. The most striking feature is the large number of galaxies destroyed
by the tidal field of the NFW cluster halo. This halo tidal disruption was nil (in the
Virgo-like cluster) to a handful (in the Perseus-like cluster) for the β-model back-
ground halo. With the NFW profile, the number of halo tides is comparable to the
galaxy tides, even exceeding the latter in runs G5 and G6.

The reason for such a behavior is that the NFW halo mass profile rises much
more steeply than the β-model mass profile of a Virgo-like cluster up to a distance
r ∼ 1.9 Mpc. So the NFW halo is significantly more massive (by factors as high as
4–5) than the β-model halo at distances r < 1 Mpc, where halo tides are dominant
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Table 8. Simulations for series G.

Mtotal

Run [1011M�] Ntotal Nmerge N
gal
tides Naccr Nhalo

tides

(col. 1) (col. 2) (col. 3) (col. 4) (col. 5) (col. 6) (col. 7)

G1 721.9 372 72 55 6 47
G2 1034.3 637 129 80 4 63
G3 821.1 530 127 89 5 73
G4 992.3 457 113 61 9 44
G5 899.7 618 94 56 7 64
G6 947.1 452 95 31 2 34
G7 865.2 542 170 91 7 77
G8 1011.6 725 169 101 7 71
G9 1100.6 726 214 144 17 103
G10 1174.4 619 190 76 2 57

Neject fsurv fM fICS αstart αend

(col. 8) (col. 9) (col. 10) (col. 11) (col. 12) (col. 13)

G1 1 0.513 0.486 0.498 −1.27 −1.26
G2 7 0.556 0.405 0.406 −1.29 −1.26
G3 1 0.443 0.587 0.589 −1.31 −1.29
G4 1 0.501 0.211 0.229 −1.28 −1.26
G5 8 0.629 0.443 0.443 −1.29 −1.28
G6 17 0.604 0.263 0.288 −1.31 −1.32
G7 1 0.362 0.543 0.555 −1.31 −1.25
G8 1 0.519 0.502 0.510 −1.24 −1.20
G9 1 0.340 0.467 0.501 −1.27 −1.23
G10 6 0.465 0.458 0.454 −1.28 −1.23

(as discussed in section 4.5). Consequently galaxies near the cluster center experience
a larger tidal field and are more likely to be tidally disrupted.

This larger number of halo tides alters several results in our simulated NFW model
cluster as compared to the β-model. The mergers exceed the galaxy tides, usually by
factors 1.3–1.8 (except runs G6 and G10, where the factors are 3 and 2.5). But when
tides by galaxy and cluster halo are added together, they become comparable to or
even exceed the number of mergers. The accretions are always small in number, and
when added to mergers do not have much effect on the above.

The mean fICS for series G is fICS = 0.447±0.113. This is significantly larger than
the ICS luminosity fraction obtained with the β-model clusters. The reason is again the
numerous halo tides. Some massive galaxies are being destroyed by the tidal field of
the NFW halo, when they come near the cluster center, and this is contributing a large
mass (and luminosity) fraction to the ICS. In this series G, we obtained the average
values of α as αstart = −1.285 ± 0.022 and αend = −1.258 ± 0.034.

Also combining the set of galaxies of all the 10 runs in series G, we obtained the best
fit Schechter exponent for the surviving galaxy distribution at z = 0 as α = −1.25.
Analogous to our approach for the β-model in section 4.3, we note that |α| decreases
by ∼0.03 between z = 1 and z = 0. So we performed a new series of simulations,
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series H, using αstart = −1.31, expecting that this will evolve to α ∼ −1.28 at z = 0.
This series includes galaxy harassment but no cD galaxy. The results for series H are
shown in Table 9.

Series H continues the trends of series G pertaining to a NFW profile. There are a
large number of halo tides that dominate the mass fraction, and result in a high value of
fICS. The combined numbers of tidal disruptions (by galaxy and halo) are comparable to
or exceed the numbers of mergers. The mean fICS for series H is fICS = 0.491±0.132.
In this series H, we obtained the average values of α as αstart = −1.310 ± 0.020 and
αend = −1.288 ± 0.036.

We then performed a series of simulations by putting a cD galaxy at the center of the
NFW cluster halo, and called it series I. The results are shown in Table 10. Here, the
numbers of tides by the cluster halo and by other galaxies are comparable; when added
the total occurrence of tides compares to or exceeds that of mergers. Comparing series H
and series I (NFW-type clusters respectively without and with a cD galaxy,) there are
more accretions when a cD galaxy is introduced (similar to series D and F). The trend
seen before with the Perseus-like clusters (between series E and F), that the number
of tidal disruptions by the background halo reduces in the presence of a cD galaxy, is
almost absent in the NFW-type clusters. Galaxies approaching the cluster center get
destroyed by the tidal field of the halo before the cD galaxy can have any effect.

The galactic luminosity fractions dispersed into the ICM are neither too high, nor
too low. We suspect this is the combined effect of putting a cD galaxy in an NFW type
cluster. There is a tendency of the ICS luminosity fraction to be high in an NFW model
cluster, and a cD galaxy tends to reduce the luminosity fraction imparted to the ICM.
These two opposing trends cause the fICS values to be moderate in series I. Here the
mean fICS is fICS = 0.381 ± 0.059 .

4.7 Series J: Cluster mass growth

We performed a series of simulation in which we consider mass growth of the
background cluster halo with time by accretion. The mass growth rate is adopted from
the N -body simulations of Wechsler et al. (2002), where the functional fit to the mass
accretion histories of dark matter halos is given by

M(z) = M0e
−κz. (26)

Here, M(z) is the halo mass at z > 0, M0 is the final halo mass at z = 0, and κ is a
constant depending on halo mass. Figure 4 of Wechsler et al. (2002) plots the average
mass accretion histories, from which we read M(z = 1)/M0 ∼ 0.75 for massive halos
(M0 > 3 × 1013h−1M�). Hence we consider that there has been 33% growth of halo
mass from z = 1 to z = 0, the evolution time in our simulations (section 3.1).

We assume that the density profile of the cluster halo remains the same. We calculate
the initial halo mass at z = 1 using a β-profile with β = 0.53, a core radius rc = 28 kpc
and a central density ρ0 = 7.27 × 10−26 g cm−3, which is appropriate for the Perseus
cluster (section 4.5). This halo is then allowed to evolve up to z = 0 according to
the mass growth rate in equation (26). We use, for each run, exactly the same initial
conditions as in series E.

The results for series J are shown in Table 11. Comparing series E and series J
(Perseus type clusters respectively without and with cluster growth), there are more
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Table 10. Simulations for series I.

Mtotal

Run [1011M�] Ntotal Nmerge N
gal
tides Naccr Nhalo

tides

(col. 1) (col. 2) (col. 3) (col. 4) (col. 5) (col. 6) (col. 7)

I1 1189.1 495 114 53 26 75
I2 1255.5 705 183 100 16 87
I3 1189.9 643 152 127 35 119
I4 1153.5 548 108 78 8 66
I5 1309.4 821 228 139 19 87
I6 1330.8 596 105 56 2 54
I7 1315.8 775 215 126 37 105
I8 1188.1 691 118 91 12 71
I9 1236.6 574 103 73 12 56
I10 1093.4 634 96 96 8 64

Neject fsurv fM fICS αstart αend

(col. 8) (col. 9) (col. 10) (col. 11) (col. 12) (col. 13)

I1 1 0.457 0.322 0.399 −1.34 −1.31
I2 0 0.452 0.326 0.423 −1.34 −1.32
I3 0 0.327 0.391 0.494 −1.29 −1.31
I4 1 0.524 0.255 0.335 −1.32 −1.30
I5 1 0.423 0.341 0.445 −1.33 −1.31
I6 9 0.621 0.265 0.334 −1.31 −1.30
I7 0 0.377 0.299 0.372 −1.33 −1.31
I8 1 0.576 0.248 0.305 −1.36 −1.35
I9 1 0.573 0.295 0.344 −1.32 −1.30
I10 1 0.582 0.274 0.359 −1.31 −1.29

Figure 4. Fractional number of galaxies destroyed by mergers, f
mergers
destroyed (filled circles), and by

tides, f tides
destroyed (open circles), averaged over all runs within each series of Table 1. Error bars

show the standard deviation.
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Figure 5. Mass histogram of number fraction (dashed line) and luminosity fraction (solid line)
of galaxies contributing to the ICL in run C3.

galaxy interactions in the growing cluster, which cause the survival fraction to decrease.
In series J, the numbers of mergers and galaxy tidal disruptions increase by factors
up to 1.2. The numbers of accretions, halo tides, and ejections remain almost same or
increase slightly.

There is an increase in the ICS luminosity fraction in the growing cluster, because of
the larger number of tidal disruptions. The mean fICS in series J is fICS = 0.429±0.083.
This is somewhat higher than the mean value in series E.

5. Discussion

5.1 Mergers and tides

To quantify the relative importance of destruction by tides and by mergers, we calcu-
lated, for each run, the following fractional numbers:

f
mergers
destroyed = Nmerge + Naccr

Ndestroyed
, (27)

f tides
destroyed = N

gal
tides + Nhalo

tides

Ndestroyed
, (28)

where Ndestroyed = Nmerge +N
gal
tides +Naccr +Nhalo

tides. We then averaged the fractions over
all the runs in each series of the simulations. The results for the set of series in Table 1
are shown in Fig. 4. The destruction by mergers clearly dominates over destruction
by tides for the β model, while they are of comparable importance for the NFW
model.

In order to investigate the mass distribution of the galaxies contributing to the ICL
in our simulations, we plotted the mass histograms of the number fractions and the
luminosity fractions of such galaxies in run C3, as shown in Fig. 5. These fractions
are with respect to all the galaxies ending up in the ICM in this run. While most of
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the galaxies destroyed by tides are dwarfs, the destruction of few galaxies of mass
M > 1011M� provides more than 60% of the intracluster light.

We can show that, contrary to popular belief, the destruction of DGs alone cannot
explain the observed ICL. We calculated the total light fraction of all the galaxies
(destroyed or not) with M < 1011M� in our simulated cluster of run C3. This would
be the fraction of intracluster light if all DGs, and only DGs, were destroyed. We
get the luminosity fraction of DGs as 0.034, which is smaller than the most observed
ICL fraction values. To obtain larger values, compatible with observations, either
(1) clusters must contain dwarfs many times more than a Schechter distribution would
predict, (2) dwarfs galaxies have a much lower M/L ratio than we assumed, or (3) some
intermediate-mass or massive galaxies are destroyed.

The last argument is the most plausable, and it is supported by our simulations:
some intermediate-mass or massive galaxies are getting destroyed by the tidal field of
the most massive galaxy. Note that in this high mass range we are in the exponential
tail of the Schechter distribution. The mass ratios between the most massive galaxy
and the high-mass ones destroyed are factors of about 3 to 5, so destruction by tides is
viable.

5.2 Intracluster stars

There have been several observational measurements of the light fraction contained
in the ICS with respect to the total light in a cluster. We collected some values of the
ICS fraction from the literature, and list them in Table 12. In Fig. 6 we show the ICS
luminosity fraction we obtained in our simulations, plotted as horizontal lines showing
the average fICS from the runs in series A–J (Table 1, section 4). For comparison,
the observed fICS values (from Table 12) are shown by the symbols and error bars.
We can clearly see that the ICS luminosity fraction in clusters from observations fall
well within our simulation predictions. A few clusters have too small fICS, which are
probably galaxy groups and low-mass clusters.

Our simulation results indicate that the tidal destruction of galaxies (by other galax-
ies and by the cluster halo) in clusters can sufficiently explain the observed fraction
of ICL. Also our results (in section 4) imply that for each cluster halo density profile,
namely, β and NFW models, fICS increases with the mass of the cluster halo. This is
consistent with the studies finding that more massive clusters have a larger fraction of
ICL than the less massive ones (Lin & Mohr 2004; Murante et al. 2004).

5.3 Limitations of the method

The strengths and weaknesses of the methodology used in this work both reside in
our somehow original approach of using one single particle to represent each galaxy,
combined with a subgrid treatment of galaxy mergers, tidal disruption, and galaxy
harassment.

On the positive side, this approach has enabled us to perform a very large number
of simulations (148 total), covering a fairly large parameter space, while obtaining
statistically significant results. Doing this many simulations without resorting to sub-
grid physics would have been computationally prohibitive. In implementing the sub-
grid physics, we have attempted to make the most reasonable choices possible.



32 Paramita Barai et al.

Table 12. Observed values of the intracluster light fraction.

Index Cluster fICS (%) �fICS (%) Reference

1. Coma 50 – Bernstein et al. (1995)
2. Abell 1689 30 – Tyson & Fischer (1995)
3. Abell 1651 <5 – Gonzalez et al. (2000)
4. M96 (Leo) group <1.6 – Castro-Rodriguez et al. (2003)
5. HCG 90 45 5 White et al. (2003)
6. Virgo 15.8 8 Feldmeier et al. (2004b)
7. A801 16 4.7 Feldmeier et al. (2004a)
8. A1234 17 4.4 Feldmeier et al. (2004a)
9. A1553 21 16 Feldmeier et al. (2004a)
10. A1914 28 16 Feldmeier et al. (2004a)
11. 93 clusters 50 10 Lin & Mohr (2004)
12. 683 clusters 10.9 5.0 Zibetti et al. (2005)
13. A4059 22 12 Krick & Bernstein (2007)a

14. A3880 14 6 Krick & Bernstein (2007)
15. A2734 19 6 Krick & Bernstein (2007)
16. A2556 6 5 Krick & Bernstein (2007)
17. A4010 21 8 Krick & Bernstein (2007)
18. A3888 13 5 Krick & Bernstein (2007)
19. A3984 10 6 Krick & Bernstein (2007)
20. A141 10 4 Krick & Bernstein (2007)
21. AC 114 11 2 Krick & Bernstein (2007)
22. AC 118 14 5 Krick & Bernstein (2007)
aKrick & Bernstein (2007) measured these fICS values in the r band.

Figure 6. Fraction fICS of intracluster stars. The horizontal lines show the average fICS values
in our simulations, from the runs of the series in Table 1 (section 4), with solid line: Virgo-like
cluster (series A–D), dashed line: Perseus-like cluster (series E–F), dotted line: NFW model
cluster (series G–I), dot-dashed line: Perseus-like growing cluster (series J). The symbols and
error bars show actual measurements, as tabulated in Table 12.
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One free parameter is the geometric factor in equation (10), but for reasonable density
profiles, the values of that factor do not appear to vary much. The assumption that a
galaxy is considered ‘tidally disrupted’ if 50% of its mass becomes unbound is also the
most reasonable one we could make. Our technique for generating the initial conditions
is based on four key assumptions:

(1) the galaxy distributions are isotropic,
(2) the galaxy number density profile ν(r) follows the density profile ρhalo(r) of the

background cluster halo,
(3) the mass is segregated in the cluster, with the most massive galaxies being located

in the center, and
(4) the cluster is in equilibrium (except for series J).

So even though our prescription for generating the initial conditions contains many
tunable parameters, we believe that the underlying approach is sound.

On the negative side, two particular aspects of the methodology can be considered
weak. First, the treatment of galaxy harassment is highly speculative. We have assumed
that some amount of orbital kinetic energy �E is dissipated into internal energy during
an encounter between two galaxies, that this amount is related to the initial internal
energies of the galaxies, and that the energy dissipated is distributed equally between
the two galaxies. The dissipation of energy and its consequences during a real galactic
encounter are certainly much more complex. The implemented subgrid model could
thus, potentially, be refined.

Another important limitation of our approach is that it deals with isolated clusters
in equilibrium (except for series J). In the real universe, clusters constantly experience
mergers and accretion. We justify our approach by the fact that most clusters will
experience, at some epoch, a major merger, during which most of the final mass of the
cluster is assembled. From that point, if we can neglect the addition of mass by minor
mergers and accretion, the cluster can be treated as isolated. Of course, such scenario
cannot describe all clusters. In a forthcoming paper (Brito et al. 2008), we will present
a study of cluster formation and evolution inside a cosmological volume containing
many clusters. This will be achieved by implementing the subgrid approach described
in this paper into a cosmological N -body algorithm.

6. Summary and conclusion

We have designed a simple model for the evolution of galaxies in an isolated cluster,
in order to compare the destruction of dwarf galaxies by mergers vs. tidal disruptions,
and to predict the contribution of DGs to the origin of intracluster stars. Our algorithm
combines a direct N -body computation of gravitational interactions, along with a
subgrid treatment of the other physical processes (merger, tidal disruption, accretion,
etc.) of the galaxies. Using this algorithm, we have performed a total of 148 numerical
simulations of galaxy clusters, examining the fate of DGs. Our results and conclusions
are as follows:

• The destruction of dwarf galaxies by mergers dominates over destruction by tides,
in most of our simulation runs with all the models (β-Virgo, β-Perseus, NFW) of
cluster halo density.
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• The destruction of galaxies by the tidal field of other galaxies and by the cluster
halo imparts a significant amount of galactic mass into the ICM. This is sufficient
to account for the observed fraction of intracluster light in galaxy clusters. In our
simulations, the average ICS luminosity fraction, fICS, has a range 16–49%. We
see a clear trend of increase of fICS with the mass of the cluster halo. All these
are well consistent with observations and other numerical studies.

• In the NFW model simulated clusters, there are a large number of tidal disruptions
of galaxies caused by the gravitational potential of the cluster halo, and this
component dominates the mass fraction. We note that it has been our assumption
that the cluster halo is stationary, and does not evolve in response to the forces
exerted on it by the galaxies (section 2.1). Such an assumption is probably a poor
one with the NFW model clusters. We point out that this could imply a possible
solution to the cusp crisis of cluster dark matter halos. The central cuspy region
of the cluster dark matter halo could have inelastic encounters with the member
galaxies, which could inject energy into the halo and erase the cusp.

• In our simulations, the presence of a cD galaxy increases occurrences of accretion,
decreases tidal disruptions by the cluster halo, and reduces the ICS luminosity
fraction. This is opposite to the trend seen from observations that fICS is higher
in the presence of a cD.

• The vast majority of galaxies destroyed by tides are dwarfs. However, a few
high-mass (M > 1011M�) galaxies are also destroyed, and these can provide a
substantial fraction of the ICL. Furthermore, the destruction of such high mass
galaxies is required, since the dwarfs alone do not contain enough stars to account
for the observed ICL, even if they were all destroyed.
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Appendix

The internal energy of galaxies

Since we represent galaxies as individual particles, we cannot directly compute their
internal energy. We therefore need an estimate that can then be used in equation (10).
We write the potential energy of a galaxy of mass M and radius R as:

W = −ζGM2

R
, (29)

where ζ is the geometric factor, which depends on the shape and density distribution
of the galaxy. For a uniform-density sphere, ζ = 3/5. In our simplified model, we treat
galaxies as spheres, but we should certainly not assume a uniform density. Instead,
any galaxy will be centrally concentrated. The value of ζ will depend on the assumed
density profile, but we do not expect that dependence to be very strong if we stick with
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reasonable profiles. So we consider the simplest case of an isothermal sphere with a
cut-off radius R. The density and mass inside r are given by:

ρ(r) = M

4πRr2
, (30)

m(r) = Mr

R
, (31)

where M ≡ m(R) is the total mass. The gravitational field is given by:

g = −∇φ = −Gm(r)

r2
r̂ = −GM

rR
r̂. (32)

We integrate this expression, with the boundary condition φ(R) = −GM/R, to get
the gravitational potential,

φ = GM

R

(
ln

r

R
− 1

)
. (33)

The potential energy is given by:

W = 1

2

∫∫∫
φ(r)ρ(r)d3r

= GM2

2R2

∫ R

0

(
ln

r

R
− 1

)
dr

= −GM2

R
. (34)

Hence, ζ = 1 for an isothermal sphere. Interestingly, this is not much different from
the value of 3/5 for a uniform sphere. This supports our claim that the sensitivity of ζ

on the density profile is weak. For the kinetic energy, we assume that the galaxies are
virialized. Hence, K = −W/2, and therefore the internal energy is given by:

U = K + W = −GM2

2R
. (35)

References

Aguerri, J. A. L. et al. 2005, AJ, 129, 2585.
Arabadjis, J. S., Bautz, M. W., Garmire, G. P. 2002, ApJ, 572, 66.
Arnaboldi, M. et al. 2003, AJ, 125, 514.
Arnaboldi, M. 2004, IAUS, 217, 54.
Bernstein, G. M., Nichol, R. C., Tyson, J. A., Ulmer, M. P., Wittman, D. 1995, AJ, 110, 1507.
Bothun, G. D. et al. 1991, ApJ, 376, 404.
Brainerd, T. G., Specian, M. A. 2003, ApJ, 593, L7.
Brito, W., Barai, P., Martel, H. 2009, in preparation.
Carlberg, R. G. et al. 1997, ApJ, 485, L13.
Castro-Rodriguez, N., Aguerri, J. A. L., Arnaboldi, M., Gerhard, O., Freeman, K. C., Napolitano,

N. R., Capaccioli, M. 2003, A&A, 405, 803.
Cavaliere, A., Fusco-Femiano, R. 1976, A&A, 49, 137.



36 Paramita Barai et al.

Cellone, S. A., Buzzoni, A. 2005, MNRAS, 356, 41.
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Abstract. We report the serendipitous detection of a Wide-Angle Tail
(WAT) radio galaxy at 240 and 610 MHz, using the Giant Metrewave Radio
Telescope (GMRT). This WAT is hosted by a cD galaxy PGC 1519010
whose photometric redshift given in the SDSS DR6 catalogue is close to
the spectroscopic redshifts (0.105, 0.106 and 0.107) of three galaxies found
within 4′ of the cD. Using the SDSS DR6, we have identified a total of
37 galaxies within 15′ of the cD, whose photometric redshifts are between
0.08 and 0.14. This strongly suggests that the cD is associated with a group
of galaxies whose conspicuous feature is a north–south chain of galaxies
(filament) extending to at least 2.6 Mpc. The ROSAT all-sky survey shows
a faint, diffuse X-ray source in this direction, which probably marks the
hot intracluster gas in the potential well of this group.

We combine the radio structural information for this WAT with the galaxy
clustering in that region to check its overall consistency with the models
of WAT formation. The bending of the jet before and after its disruption
forming the radio plume, are found to be correlated in this WAT, as seen
from the contrasting morphological patterns on the two sides of the core.
Probable constraints imposed by this on the models of WAT formation are
pointed out. We also briefly report on the other interesting radio sources
found in the proximity of the WAT. These include a highly asymmetric
double radio source and an ultra-steep spectrum radio source for which no
optical counterpart is detected in the SDSS.

Key words. Radio galaxies—cluster of galaxies—ram pressure—intra-
cluster medium.

1. Introduction

Wide-Angle Tail (WAT) are a subset of radio galaxies near the Fanaroff–Riley (1974)
luminosity transition, which have been extensively discussed because of their exclusive
association with cluster dominant (cD) galaxies and also because of the abrupt flaring
of their jets after maintaining a well collimated flow to distances ≥ 20 kpc from the
core (e.g., Owen & Rudnick 1976; O’Donoghue et al. 1993). The jet disruption is
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sudden unlike FR I jets and the resulting plumes are often sharply bent. On the other
side, although the jets are collimated like FR II galaxies, they do not terminate in
hot spots. Search for explanations of the WAT phenomenon began in the 1980s (e.g.,
Burns et al. 1981; Eilek et al. 1984; Leahy 1984; O’Dea & Owen 1985; O’Donoghue
et al. 1990). Since neither the bending of the radio plumes occurs universally, nor is
the bending of jet essential for its flaring and plume formation, jet bending is currently
regarded as a phenomenon independent from jet flaring (Hardcastle & Sakelliou 2004;
Hardcastle et al. 2005).

Since host galaxies of WATs are the dominant members of their group/cluster and
hence located close to the bottom of the gravitational potential well, they are not
expected to have a large motion relative to the intracluster medium (ICM). This sit-
uation is not conducive to large ram pressure that could bend the jet/plume leading
to the WAT morphology. An alternative mechanism, based on numerical simulations
has been investigated by Loken et al. (1995), Hooda & Wiita (1996) and Burns et al.
(1994). In this picture, the sudden disruption of the jet and bending of its plume can
arise, if upon crossing a sharp transition between the interstellar medium (ISM) of
its host galaxy and the ICM, the jet encounters a transonic crosswind of the ICM
resulting from cluster merger (an analytical treatment of the jet propagation through
an ISM/ICM interface can be found in Gopal-Krishna & Wiita 1987). Another alter-
nate mechanism proposed in Loken et al. (1995) invokes a jet crossing, an oblique
shock formed due to colliding clumps in the cluster. Strong support for the mer-
ging cluster scenario comes from the detection of X-ray elongations which trace
the merger axis and are found to be in the direction of WAT radio tails (Gomez
et al. 1997) and perpendicular to the initial jet direction (Burns et al. 1994). Another
mechanism, by Higgins et al. (1999), associates the jet flaring with its encounter
with a discrete clump in the ICM. While all these mechanisms seem plausible, it
is intriguing that the deep Chandra imaging, which is available for the best known
WAT, namely 3C 465 (Hardcastle et al. 2005), has failed to reveal any discontinu-
ity in the external medium at the locations where the jets flare. Moreover, for this
same WAT, Jetha et al. (2006) and Hardcastle et al. (2005) have argued that, if the
jet/plume is extremely light relative to the external medium, the speed of the host
galaxy required for jet bending is only ∼100 km s−1, which is not implausibly high
even for the central galaxies of rich clusters (much higher speeds can occur for gala-
xies in merging clusters). Thus, the bending of the jet/plume in WATs can possibly be
explained.

The circumstance of jet termination in WATs has been investigated in several studies.
Hardcastle & Sakelliou (2004) have shown that the distance between the host galaxy
and the base of the plume inversely correlate with the cluster richness as quantified in
terms of the temperature of the ICM (also, Jetha et al. 2006). Since WATs reside at or
close to gravitational centres of clusters and groups of galaxies, these can also be used
as a signpost for the cluster or group of galaxies. Indeed, Blanton et al. (2000, 2001,
2003) have identified several clusters using the WAT sources detected in the FIRST
survey (Becker et al. 1995).

In this paper, we report the GMRT detection of a WAT associated with the galaxy
PGC 1519010 (SDSS J113920.37+165206). The radio source was noticed by us while
imaging the radio continuum of the low surface brightness galaxy UGC 6614. This
was interesting, given that the galaxy PGC 1519010 has itself been catalogued as a
low surface brightness galaxy (U1-3) by O’Neil et al. (1997). In this paper, we discuss
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Figure 1. PGC 1519010 (U1-3) in optical – from the SDSS. Note the core-halo type of mor-
phology indicating that it is a cD type elliptical with a large stellar halo extended north–south.

the nature of this radio source and its optical/X-ray environment. A Hubble constant
of 70 km s−1 Mpc−1 is assumed.

2. PGC 1519010 – the host galaxy

PGC 1519010 is located ∼16′ to the south of UGC 6614, the giant low surface bright-
ness (LSB) galaxy that was the principal target of our observations as part of our larger
programme of observing the radio-band AGN activity in giant low surface brightness
galaxies (see Das et al. 2007, 2008). We noticed that PGC 1519010 is catalogued by
O’Neil et al. (1997) as the low surface brightness galaxy U1-3. The catalogue con-
tains all those galaxies in the region of the Cancer and Pegasus clusters whose central
surface brightness μ(0) ≥ 22.0 mag-arcsec−2 (O’Neil et al. 1997). Curiously, O’Neil
et al. found that U1-3 has a central surface brightness of μb(0) = 22.39 mag-arcsec−2

and that its radial brightness distribution is better fit by the King’s model (1962, 1966),
rather than the exponential profile characteristic of LSB (disk) galaxies. Since King’s
model is known to describe the surface brightness distribution of globular clusters in
our galaxy, O’Neil et al. had in fact suggested that U1-3 (PGC 1519010) might be an
LSB globular cluster. A closer inspection of the SDSS image, however, showed that
it is an elliptical galaxy, most probably a cD with a large halo extending in the north–
south (Fig. 1). Such a core-halo distribution of stars can be explained in terms of tidal
distortion of an elliptical (with a typical de Vaucouleurs r1/4 brightness profile) by its
repeated gravitational encounters with other galaxies (e.g., Kormendy 1997), a highly
plausible scenario for central regions of clusters and groups of galaxies.

Thus, we point out that the galaxy PGC 1519010 classified by O’Neil et al. (1997)
as an LSB galaxy needs to be reclassified as an elliptical in view of its core-halo
stellar distribution (see Fig. 1), akin to cD galaxies generally found near the centres of
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Table 1. Optical properties of PGC 1519010 from literature.

Parameter Value Reference

Names SDSS J113920.37+165206 1
PGC 1519010 2
2MASX J11392034+1652058 3

Photmetric z1 0.138 1
Photmetric zCC2 0.112 1
Photmetric zD1 0.104 1
Radial brightness Kings’s model 4
Morphological type code 2.1 ± 5 2
Total apparent corrected B-mag 16.69 2
Total apparent corrected I-mag 15.1 2
Inclination 35◦ 2
u-magnitude 18.72 1
g-magnitude 16.64 1
r-magnitude 15.62 1
i-magnitude 15.14 1
z-magnitude 14.83 1

μb(0) mag-arcsec−1 22.39 4
Inclination angle 47.9◦ 4
Major axis upto μb = 25 isophote 17.9′′ 4
Closeby cluster NSC 113924+165506 5

1. SDSS DR6, 2. Hyperleda, Paturel et al. (2003), 3. NED, 4. O’Neil et al. (1997),
5. Gal et al. (2003).

clusters/groups of galaxies. The main properties of this galaxy obtained from literature
are summarized in Table 1.

Figure 2(a, b) shows the radio continuum images of the WAT radio galaxy at 21 cm,
reproduced from the FIRST survey (Becker et al. 1995) and the NVSS survey (Condon
et al. 1998). The twin-lobed morphology consists of a diffuse radio lobe west of
the core and a diffuse eastern lobe which suggests that the eastern jet has undergone
bending prior to flaring. Such a morphology is indicative of WATs and we report here
its structural details based on our GMRT observations. We also discuss the optical field
around this galaxy, as well as the faint halo of soft X-rays picked up in the ROSAT all
sky survey (Voges et al. 1999 and references therein).

3. GMRT observations and results

The field was observed on 30 December 2005 using GMRT (Swarup et al. 1991;
Ananthakrishnan & Rao 2002), in the dual-frequency mode which allows simultaneous
observations at 240 and 610 MHz (for details of the observations, see Das et al. 2009,
in preparation). The data obtained in the native lta format were imported to and ana-
lysed using NRAO AIPS1. Data of single RFI-free channels were first gain-calibrated.

1The National Radio Astronomy Observatory is a facility of the National Science Foun-
dation operated under co-operative agreement by Associated Universities, Inc.
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Figure 2. (a) PGC 1519010 in 21 cm radio continuum from the FIRST survey (resolution
5.7′′). Note the double-lobed structure around the core of the galaxy and the jets emerging from
the central galaxy in the FIRST map. The first contour is 0.36 mJy/beam and thereafter the
contours are plotted in multiples of 2. Note the bent radio morphology on the eastern side of
the core. (b) PGC 1519010 in 21 cm radio continuum from the NVSS (resolution 45′′). Note the
double-lobed structure around the core of the galaxy. The first contour in the map is 1.5 mJy/beam
and thereafter the contours are plotted in multiples of 2. Note the bent morphology of the radio
source. The plus (+) signs indicate the possible member galaxies of the group/cluster for which
photometric redshifts are available, the diamonds indicate member galaxies for which spectro-
scopic redshifts are available and the square indicates the centre of the cluster given by Gal et al.
(2003) which we discuss later in the paper.
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Bandpass calibration was then applied, after which several frequency channels were
collapsed to generate a continuum database. The 240 MHz data were severely affected
by radio frequency interference with the net result that only 1.2 MHz of the total
6 MHz was usable and the rest of the data had to be discarded. The 610 MHz images
were generated using a total bandwidth of 12.5 MHz. We made images employing the
robust weighting scheme (Briggs 1995), setting robust = 0 (between uniform and nat-
ural weighting) and robust = 5 (natural weighting) at both frequencies. All the data
were self-calibrated and primary beam corrected. The GMRT images are shown in
Fig. 3(a and b). We note that the robust = 0 image at 240 MHz has a highly ellipti-
cal beam whereas the robust = 5 image at 610 MHz does not add any more infor-
mation to the WAT structure and hence these are not presented here. Since the WAT
is located about 16′ south of the phase centre of our observations, the sensitivity is
compromised, especially at 610 MHz where half the power width of primary beam is
about 50′.

A striking feature of this WAT, evident from all the maps is that the overall bending
of the radio structure is conspicuous only on the eastern side of the core (see Figs. 2
and 3). More clarity about the morphology emerges from a joint inspection of the

Figure 3. (a) The WAT associated with PGC 1519010 in 610 MHz radio continuum imaged
using the GMRT. This image was made using Briggs robust = 0 and has an angular resolution
of 7′′ × 6′′ at a position angle of −40.3◦. The first contour is 0.9 mJy/beam and contours are
subsequently plotted in multiples of 2. Note the C-shaped morphology of the radio structure and
the clearly bent jet/plume in the east. (b) The WAT associated with PGC 1519010 in 240 MHz
radio continuum imaged using the GMRT. Note the double-lobed structure around the core of
the galaxy. The 240 MHz image was made using natural weighting with Briggs robust = 5 and
has an angular resolution of about 43′′ × 34′′ at a position angle of −29.4◦. The lowest plotted
contour is 6 mJy/beam and the contours then increase in multiples of 2. The explanation of the
symbols are as in Fig. 2.
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Figure 3. (Continued).

GMRT (610 MHz) and the FIRST (1.4 GHz) maps, both having a resolution of ∼6′′
(Figs. 2a and 3a). It is seen that the twin jets emerge from the core along the east–
west direction and form their lobes. Evidently, only the brighter eastern jet undergoes
bending. This occurs gradually along the jet and the plume followed by a sharp bending
(towards a position angle of about 220◦) of the tail (see Fig. 3a). In stark contrast, no
sign of a bent morphology is evident on the western side, despite the sudden flaring of
the jet after propagating for nearly 230 kpc from the core.

In Fig. 5, we show the spectral index distributions derived by combining the GMRT
images with the NVSS and FIRST images at 1.4 GHz (Fig. 2). For this, the GMRT
240 MHz map was first smoothed to the 45′′ circular beam of the NVSS image. To
examine the spectral index in the core region, the spectral index map was generated by
combining the GMRT 610 MHz and the 1.4 GHz FIRST maps, after convolving the
FIRST image to match the resolution of the 610 MHz GMRT image (7′′ × 6′′). The
spectral index distributions were generated using the >3σ emission in the relevant
maps. The spectrum is flat near the core (α = −0.4) and starts steepening along the
eastern jet. The spectrum further steepens to α ∼ −1 in the southernmost parts of the
eastern plume (see Fig. 5). Near the peak of the eastern plume, we find α ∼ −0.7.
Such a smooth variation in the spectral index away from the core is characteristic of
WATs (see e.g., Hardcastle 1998).

3.1 Interesting radio sources located near the WAT

We also determined the spectral indices of the radio sources found within half a degree
of the cD galaxy. The flux densities of the objects obtained from our 240 MHz map
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Figure 4. The WAT radio source associated with PGC 1519010 in the 610 MHz (left) and
240 MHz (right) radio continuum superposed on the SDSS R band image plotted on the same
angular scale. The angular resolution of the 610 MHz image is 7′′ × 6′′ with a position angle of
−40.3◦ whereas it is 43′′ × 34′′ at a position angle of −29.4◦ at 240 MHz. The bright optical
object between the western jet and plume is classified as a star in the SDSS.

Figure 5. The low resolution (45′′) spectral index distribution between 240 and 1.4 GHz. Note
the gradual steepening of the spectrum along the jet and plume in the east with increasing
separation from the core.

and from the FIRST (Becker et al. 1995) were used unless the object was extended (in
which case NVSS data by Condon et al. 1998 were used). Two interesting objects were
found and we list their flux densities and spectral indices in Table 2. The first object
(GMRT1) has an ultra-steep spectrum with α = −1.2 and no optical counterpart is
seen in the SDSS. The source is not resolved in the highest resolution maps which
translates to an upper limit on its angular extent of 1.8′′ × 0.6′′ at a position angle of
80◦ obtained from the FIRST. The nearest galaxy listed by SDSS is 15′′ away from
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Table 2. Two interesting radio sources found within 15′ of the WAT radio galaxy. The
1.4 GHz flux density for GMRT1 is from FIRST and for GMRT2 is from NVSS data.
Note that the radio position of GMRT1 and the position of the optical counterpart of
GMRT2 are listed here. We use S ∝ να .

α2000 δ2000 S1420 MHz S610 MHz S240 MHz

Object hh mm ss.s dd mm ss.s mJy mJy mJy α240
1400

GMRT1 11 39 27.3 16 45 50.0 68.7 136 578 −1.2
GMRT2 11 38 23.1 16 51 50.1 24.8 34.5 107.3 −0.82

GMRT1. This strong ultra-steep spectrum object is located ∼3′ to the south of the
eastern lobe of the WAT (Figs. 2b, 3b and 7).

The second object (GMRT2) listed in Table 2 lies to the west of the cD and is an
extended source. SDSS lists five galaxies within 0.5′ of the radio source which are
shown by crosses in Fig. 6. All are faint objects without reliable redshift estimates.
Our 610 MHz image (Fig. 6) has picked up faint extended emission which shows that
the source is, in fact, a highly asymmetric double of total angular size ∼80′′. The likely
counterpart is marked with a star in Fig. 6. If this source lies at the distance of the
WAT, then its linear size would be about 180 kpc. However, since the host galaxy is
faint, this object is likely to be more distant and therefore physically large.

4. Discussion

4.1 A new WAT and its associated cluster

The galaxy PGC 1519010, as inferred here from its optical morphology and the
association with a powerful WAT, is a cD galaxy (Table 1).

As mentioned above, the most striking and peculiar morphological feature of this
WAT is the contrast between the jet/plume bending on the opposite sides of the core,
such that the bending is found exclusively on the eastern side. In order to investigate this
further, we have inspected the SDSS database. Gal et al. (2003), using the SDSS have
identified a cluster (NSC 113924+165506) centred ∼3′ north–east of PGC 1519010
(see Fig. 3, the square symbol) and having a photometric redshift of 0.1365, which is
close to the value estimated for the WAT. To probe this further, we show in Fig. 7, the
distribution of the galaxies listed in SDSS DR6. For the cD progenitor of the WAT,
SDSS J113920.37+165206, the SDSS provides three estimates of zphot = 0.138, 0.112
and 0.104. These are in reasonable agreement with the afore-mentioned value for the
cluster (zphot = 0.1365, Gal et al. 2003). In order to trace the optical field near this
region we searched the SDSS for galaxies in the adjacent area and found three galax-
ies within ∼4′ of the cD galaxy PGC 1519010 (WAT), having spectroscopic redshifts
between 0.105 and 0.107. These include U1-8 (U1-8, O’Neil et al. 1997), an LSB
galaxy lying about 2′ south of the cD, for which Bergmann et al. (2003) have estimated
a spectroscopic redshift of 0.10715 (photometric redshifts given in the SDSS cata-
logue are 0.141, 0.095 and 0.091). The second galaxy, SDSS J113921.25+165512.8
is close to U1-8 and SDSS database gives a spectroscopic redshift of 0.105 whereas
the photometric redshifts listed there are 0.121, 0.118 and 0.108. The third galaxy lies
about 3.5′ north of the cD and SDSS gives a spectroscopic redshift of 0.105 whereas
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Figure 6. The radio source GMRT2 located to the west of the WAT (Table 2). The 610 MHz
GMRT image is shown on the top and the 1.4 GHz image from FIRST is shown on the bottom. The
lowest contour at 610 MHz is 0.6 mJy/beam and at 1.4 GHz is 0.45 mJy/beam and subsequently
increases in multiples of 2. Note the extended faint emission detected at 610 MHz which is not
seen in the FIRST map. Based on this detection, the star marks the position of the likely optical
counterpart of the asymmetric double radio source whereas the plus signs (+) mark the positions
of the remaining SDSS galaxies found within 30′′ of the radio peak.

the photometric redshifts are quoted there to be 0.061, 0.094 and 0.0.095. All these
spectroscopic redshifts strongly suggest that the true redshift of the cD (WAT) is close
to 0.106, which would also be in reasonable accord with its photometric redshifts
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Figure 7. 240 MHz GMRT image of the WAT made with robust weighting = 5 is shown. The
positions of 37 galaxies which are likely to be associated with the WAT are marked in the figure.
Five of them with known spectroscopic redshift are marked with diamonds. The remaining 32
member galaxies are marked by plus (+) sign. The square marks the position of the cluster
centre NSC 113924+165506 (z = 0.1365) as given by Gal et al. (2003). The cluster is about
20′ (∼ 2.5 Mpc) in size. Note the almost NS chain of galaxies extending southwards from the
cluster centre towards the cD. The two interesting radio sources GMRT1 and GMRT2 (Table 2)
are marked by stars.

mentioned above. Taking z = 0.106 for the cD, the radio luminosities of the WAT are
9.8 × 1023 Watt-Hz−1-Sr−1 at 240 MHz and 3.2 × 1023 Watt-Hz−1-Sr−1 at 1.4 GHz.
These values lie in the region of the FR I/II transition and are thus characteristic of
WATs. The distances from the core at which the jet flaring occurs are about 90 kpc and
230 kpc, for the eastern and western jets, respectively.

To probe the large scale environment around the cD, we examined the SDSS DR6
data over a 1◦ circular region centred at the cD. In particular, we searched for the galax-
ies for which a physical association with the cD is very probable. The criterion we
employed was that the photometric redshifts of the optical objects should be between
0.08 and 0.41. A relatively wide range had to be admitted since the spectroscopic
redshifts are available for only a few galaxies in the region. We found that the range
roughly represents the typical scatter among the three SDSS estimates of the photo-
metric redshifts for the objects in this region.

The 37 objects that we selected from the above criterion include only five galaxies
with known spectroscopic redshifts. Nonetheless, they can be expected to manifest
the gross features of the galaxy clustering associated with the cD (WAT) (see Fig. 7).
Note also that in the soft X-ray band the ROSAT (Voges et al. 1999 and references
therein) database shows a diffuse source of about 0.5◦ diameter, covering this region.
The detection of hot gas is consistent with the proposed galaxy clustering scenario. As
mentioned above, Gal et al. (2003) have reported a galaxy cluster with Abell richness
zero which is close in both redshift and direction to the galaxy group we identify here
to be associated with the WAT.
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4.2 Origin of the WAT

Perhaps the most remarkable feature emerging from the galaxy distribution (Fig. 7) is
a nearly 0.5 Mpc long chain of galaxies stretching from the cD roughly north–south
towards the cluster centre defined by Gal et al. (2003) and possibly extending also to the
south of the cD. It is along this filament that galaxies are likely to have approached
the cD prior to merging with it. This galaxy merger scenario is further supported by
the shape of the stellar halo of the cD which too is extended roughly north–south. Thus
it appears plausible that a bulk motion of the intergalactic gas has been occuring along
this galaxy filament. This circumstance may provide potentially interesting clues about
the mechanism of the jet disruption and the jet/plume bending in this WAT.

Following upon the early attempts to understand the nature of WATs (e.g., Eilek et al.
1984; Leahy 1984; O’Dea & Owen 1985), a number of physical scenarios have been
put forward to explain this rare type of phenomenon (section 1). In some of the models,
the jet disruption occurs as the jet crosses the ISM of the host galaxy into the ICM, and
is thereby subject to either a steep density gradient (Sakelliou & Merrifield 1999), or a
side-way ram pressure (‘crosswind’ arising from bulk motion of the ICM, see Loken
et al. 1995). In another scenario, the plumes form as the radio lobes of moderately
powerful twin-jets are driven outwards due to buoyancy forces (Hardcastle 1999). The
latter model is motivated by the observations that the jet in some WATs continue well
into the plume (e.g., Hardcastle 1999; Hardcastle & Sakelliou 2004).

Despite the modest sensitivity of our radio maps, the present WAT offers some
insight and a broad check on some of the proposed models. This is because of the
morphological contrast observed between its two jet/plume structures, eventhough
the kinetic powers of the two jets are expected to be similar. Firstly, in this WAT a
correlation is clearly seen between the bending properties of the jet and the resulting
plume. As seen from Figs. 2 and 4, the western jet must be propagating straight for about
230 kpc before flaring and the resulting radio plume likewise shows no sign of bending.
A contrasting pattern is seen on the eastern side of the core, where the collimated
jet undergoes a steady bending until its disruption and thereafter the resulting plume
too exhibits a sharp bend consistent with the bent trajectory of the eastern jet. From
this correlated behaviour it appears that a viable mechanism for jet disruption in WATs
should be able to bend both the plume and the associated jet. This requirement casts
some doubt on the mechanism which seeks to explain the jet disruption in terms of
collision with a dense gas cloud (section 1). Indeed, the observed alignment of the
bent eastern plume with the chain of galaxies (see Fig. 7) would seem to be basically
consistent with the ram pressure scenario involving bulk relative motion between
the ICM and the radio galaxy. The observed radio structure would also imply that
the crosswind is in the NE–SW direction with the plume finally aligning with it (see
Fig. 3a). However, were the ram pressure of the ICM crosswind effective only after
the jet crosses the ISM/ICM interface, it would be hard to explain the steady bending
of the preceding collimated portion of the jet. We may recall that a similar difficulty
for the basic crosswind scenario (e.g., Loken et al. 1995) has been noticed in the case
of the WAT 0647+693 where the 50 kpc long collimated western jet exhibits a steady
bending before its disruption (Hardcastle & Sakelliou 2004). It appears, therefore,
that the effect of the ICM crosswind moving along the galaxy filament which may
eventually cause the sharp bending of the plume and its alignment along the filament
also acts on the progenitor jet before its flaring. In fact, for the head-tail radio galaxy
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NGC 1265, Jones & Owen (1979) have proposed that a pressure gradient set-up in
the ISM due to the motion of the galaxy against ICM can bend its jet within the ISM,
provided their Mach number is not too large. But, even if such a mechanism is viable
for the present case, it will be required to explain the near absence of bending of the
western jet and its radio plume (Figs. 3a and 4). It would seem ad hoc to explain
the contrasting pattern on the two sides by postulating a much larger kinetic power
for the western jet. A conceivable alternative would be to postulate the existence of
inhomogeneities in the ICM on 100 kpc scale, but here too the inhomogeneity will
have to be positioned, so as to operate on just one side of the nucleus. Nonetheless, this
possibility needs to be investigated further. As a first step, it would be useful to make
a deeper radio image of this WAT, in order to look for any bent faint extensions of
the western plume and to trace the trajectories of the two jets more clearly. Secondly,
this object is an excellent target for multi-object spectroscopy needed for a better
delineation of the galaxy distribution around the cD. Finally, targeted X-ray imaging
of this region is needed to establish the morphological details of the ROSAT detected
diffuse X-ray source, so that the suspected filamentary gravitational potential well can
be properly traced.

5. Summary

In this paper, we report the GMRT detection of a new wide-angle-tail radio source asso-
ciated PGC 1519010 which we find to be a cD galaxy. These observations at 610 and
240 MHz were originally aimed at studying the low surface brightness galaxy located
16′ to the north. The power of the radio source at 240 MHz is ∼ 1024 Watt-Hz−1-Sr−1

which is close to the FR I/FR II break. Using the SDSS DR6 database, we have
identified a cluster of 37 galaxies likely to be associated with the WAT. Further the
ROSAT all sky survey shows faint diffuse extended X-ray emission in the same region
which indicates the presence of a hot intracluster medium. Using the spectroscopic
redshifts available for a few galaxies close to the cD, we suggest that the redshift of
the group/cluster of galaxies associated with the WAT is 0.106. Moreover, we note
that the clustering of member galaxies close to the WAT indicates a filament along
which galaxies have been merging with the cD. This scenario also finds support in the
observed NS extension of the stellar halo of the cD galaxy.

Our radio observations have highlighted the peculiar morphology of this WAT radio
source. The source shows constrasting morphology on the two sides of the core: the
eastern jet emerges from the core and undergoes a gradual bending before being dis-
rupted to form the plume which itself continues to bend in the same direction. On the
western side, the jet emerging from the core appears to continue straight for about
230 kpc, before being disrupted to form the faint plume which too shows no bent
extension. The very different behaviour on the two sides suggests that the mechanism
responsible for the plume bending is also causing the jet to bend. Several mechanisms
for jet bending have been put forward and separate mechanisms have also been invoked
to explain the jet and plume bending (section 1). However, from our present results for
the WAT associated with PGC 1519010, the similar bending shown by the jet and the
plume on the east of the core suggests that the same bending mechanism is operating
on both components.

Several theories have tried to explain the WAT radio morphology. From our data,
we favour the crosswind mechanism (Loken et al. 1995) wherein the jet runs into the
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crosswind due to the merging of clusters and which, in turn, exerts ram pressure on the
jet/plume, causing it to bend. We note that the eastern jet continues for about 90 kpc
before being disrupted into a plume. Around this distance, the jet would have crossed
the hot ISM of the host elliptical galaxy and would encounter the lower density ICM,
causing it to flare. The direction of the bending of the jet/plume agrees with the fil-
ament of galaxies and the extension of the cD stellar halo. Diffuse X-ray emission
too is extended roughly in the NS direction, lending further support to the crosswind
mechanism. However, explaining the unaffected/unbent western jet/plume is difficult
unless inhomogeneities in the ICM are invoked. More sensitive and high angular reso-
lution observations are thus required to obtain a better understanding of this interesting
system.

We also report the detection of an ultra-steep spectrum source (α = −1.2) to the
south of the eastern plume, which does not have an optical counterpart in SDSS.
Another interesting source we have found is a highly asymmetric radio double source
located to the west of WAT.
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Abstract. The propagation of a spherical shock wave in an ideal
gas with heat conduction and radiation heat-flux, and with or without
self-gravitational effects, is investigated. The initial density of the gas is
assumed to obey a power law. The heat conduction is expressed in terms
of Fourier’s law and the radiation is considered to be of the diffusion
type for an optically thick grey gas model. The thermal conductivity and
the absorption coefficient are assumed to vary with temperature and den-
sity, and the total energy of the wave to vary with time. Similarity solu-
tions are obtained and the effects of variation of the heat transfer parameters,
the variation of initial density and the presence of self-gravitational field are
investigated.

Key words. Shock wave—self-similar flow—self-gravitational effects—
heat transfer effects—variable initial density—variable total energy.

1. Introduction

The explanation and analysis for the internal motion in stars is one of the basic prob-
lem in astrophysics. According to the observational data, the unsteady motion of
large mass of the gas followed by sudden release of energy results flare-ups in novae
and supernovae. A qualitative behaviour of the gaseous mass may be discussed with
the help of the equations of motion and equilibrium taking gravitational forces into
account. Numerical solutions for self-similar adiabatic flows in self-gravitating gas
were obtained by Sedov (1959) and Carrus et al. (1951), independently. Purohit (1974)
and Singh & Vishwakarma (1983) have discussed homothermal flows behind a spher-
ical shock wave in a self-gravitating gas using similarity method. Nath et al. (1991)
have studied the above problem assuming the flow to be adiabatic and self-similar and
obtained the effects of the presence of a magnetic field. Shock wave through a variable
density medium have been treated by Sedov (1959), Sakurai (1956), Rogers (1957),
Rosenau & Frankenthal (1976a), Nath et al. (1991), Vishwakarma & Yadav (2003)
and others. Their results are more applicable to the shock formed in the deep interior
of stars.

Marshak (1958) studied the effects of radiation on the shock propagation by
introducing the radiation diffusion approximation. Using the same mode of radiation,

53
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Elliott (1960) discussed the conditions leading to self-similarity with a specified func-
tional form of the mean free path of radiation and obtained a solution for self-similar
spherical explosions. Wang (1964), Helliwell (1969) and Nicastro (1970) treated the
problems of radiating walls, either stationary or moving, generating shocks at the
head of self-similar flow-fields. The non-similar problem of a blast wave associated
with diffusive radiation was analysed by Kim et al. (1975), using matched expansions
upon the assumption that the radiation and conduction effects are significant only in
a boundary-layer around the centre of explosion. Gretler & Wehle (1993) studied the
propagation of blast waves with exponential heat release by taking internal heat con-
duction and thermal radiation in a detonating medium. Also, Abdel-Raouf & Gretler
(1991) obtained the non-self-similar solution for the blast waves with internal heat
transfer effects. Ghoniem et al. (1982) obtained a self-similar solution for spherical
explosions taking into account the effects of both conduction and radiation in the two
limits of Rosseland radiative diffusion and Plank radiative emission. In these works,
where both the radiation and conduction effects are considered, the density of the
medium ahead of the shock is taken to be uniform and effects of self-gravitation of
the medium are not taken into consideration.

The purpose of this study is, therefore, to obtain self-similar solutions for the shock
propagation in a non-uniform gas with or without self-gravitational effects, in the pres-
ence of heat conduction and radiation heat flux. The mediums ahead and behind the
shock front are assumed to be inviscid and to behave as thermally perfect gases. The
initial density of gas is assumed to vary as some power of distance. The heat trans-
fer fluxes are expressed in terms of Fourier’s law for heat-conduction and a diffusion
radiation mode for an optically thick grey gas, which is typical of large-scale explo-
sions. The thermal conductivity and absorption coefficient of the gas are assumed to be
proportional to appropriate powers of temperature and density (Ghoniem et al. 1982).
Also, it is assumed that the gas is grey and opaque, and the shock is isothermal. The
assumption that the shock is isothermal is a result of the mathematical approxima-
tion in which the heat flux is taken to be proportional to the temperature gradient; this
excludes the possibility of temperature jump (Zel’dovich & Raizer 1967; Rosenau &
Frankenthal (1976b, 1978); Bhowmick 1981; Singh & Srivastava 1982). The counter
pressure (the pressure ahead of the shock) is taken into account. The radiation pressure
and radiation energy are neglected (Elliott 1960; Wang 1964; Ghoniem et al. 1982;
Abdel-Raouf & Gretler 1991). The assumption of an optically thick grey gas is physi-
cally consistent with the neglect of radiation pressure and radiation energy (Nicastro
1970). The total energy of the flow-field behind the shock is assumed to be increa-
sing with time due to pressure exerted by a piston or inner expanding surface. The gas
ahead of the shock is assumed to be at rest. Effects of viscosity and magnetic field are
not taken into account. The results of numerical calculations were shown in the form
of graphs and tables. A comparative study was made between the results with and
without self-gravitation. Also, the effects of variation of heat transfer parameters and
the initial density exponent on the flow-field behind the shock and the shock velocity
were investigated.

2. Equations of motion and boundary conditions

The fundamental equations governing the unsteady and spherically symmetric motion
of an inviscid, ideal and self-gravitating gas, with heat conduction and radiation heat
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flux taken into account, may be written as (Carrus et al. 1951; Ghoniem et al. 1982):

∂ρ
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+ u
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+ ρ
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∂r
+ 2ρu

r
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(
∂ρ
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∂ρ
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)
+ 1

ρr2

∂

∂r
(r2q) = 0, (4)

where r and t are independent space and time co-ordinates, ρ is the density, p the
pressure, u the fluid velocity, m the mass of the gas contained in the sphere of radius
r , G the gravitational constant, e the internal energy and q the heat flux. In the non-
gravitating case, the equation (3) and the term Gm/r2 in the equation (2) do not occur.

The total heat flux q, which appears in the energy equation may be decomposed as:

q = qC + qR, (5)

where qC is the conduction heat flux, and qR the radiation heat flux.
According to Fourier’s law of heat conduction

qC = −K
∂T

∂r
, (6)

where K is the coefficient of thermal conductivity of the gas and T is the absolute
temperature.

Assuming local thermodynamic equilibrium and using the radiative diffusion model
for an optically thick grey gas (Pomraning 1973), the term qR , which represents radia-
tive heat flux, may be obtained from the differential approximation of the radiation-
transport equation in the diffusion limit as:

qR = −4

3

(
σ

αR

)
∂T 4

∂r
, (7)

where σ is the Stefan–Boltzmann constant and αR is the Rosseland mean absorption
coefficient.

The above system of equations should be supplemented with an equation of state.
A perfect gas behaviour of the medium is assumed, so that

p = �ρT , e = p

ρ(γ − 1)
, (8a, b)

where � is the gas constant and γ is the ratio of specific heats.
The thermal conductivity K and the absorption coefficient αR are assumed to vary

with temperature and density. These can be written in the form of power laws, namely
(Ghoniem et al. 1982)
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)βC
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ρ
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)δC

, αR = αR0

(
T

T0

)βR
(

ρ

ρ0

)δR

, (9a, b)
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where subscript ‘0’ denotes a reference state. The exponents in the above equations
should be compatible with the conditions of the problem and the form of the required
solution.

We have also assumed that the total energy of the explosion is non-constant and
increasing with time as (Rogers 1958; Freeman 1968; Director & Dabora 1977)

E = E0t
s, (10)

where E0 and s are constants. This increase of energy may be achieved by the pressure
exerted on the gas by a piston. The piston may be, physically, the surface of the stellar
corona or the condensed explosives or the diaphragm containing a very high pressure
driver gas, at t = 0. By sudden expansion of the stellar corona or the detonation
products or the driver gas into the ambient gas, a shock wave is produced in the
ambient gas, in an infinitesimal time interval t0 (say). The shocked gas is separated
from the expanding surface which is a contact discontinuity. This contact surface acts
as a ‘piston’ for the shock wave in the ambient medium.

A shock (spherical) is supposed to be propagating in the undisturbed ideal gas with
variable density ρ = Ar−w, where A and w are constants.

The flow variables immediately ahead of the shock front are:

u1 = 0, (11a)

ρ1 = AR−w, (11b)

p1 = 2πGA2

(w − 1)(3 − w)
R2−2w

in the case when the gas is self-gravitating, (11c)

p1 = constant in the non-gravitating case, (11d)

m1 = 4πA

3 − w
R3−w, (11e)

q1 = 0 (Laumbach & Probstein 1970), (11f)

where R is the shock radius and the subscript ‘1’ denotes the conditions immediately
ahead of the shock.

The shock is assumed to be isothermal (the formation of the isothermal shock is a
result of the mathematical approximation in which the flux is taken to be proportional
to the temperature gradient. This excludes the possibility of a temperature jump, see
for example, Zel’dovich & Raizer 1967; Rosenau & Frankenthal 1976b, 1978), and
the conditions across it are:

ρ1V = ρ2(V − u2), (12a)

p1 + ρ1V
2 = p2 + ρ2(V − u2)

2, (12b)

e1 + p1

ρ1
+ V 2

2
+ q2

ρ1V
= e2 + p2

ρ2
+ 1

2
(V − u2)

2, (12c)

T1 = T2, (12d)

m1 = m2, (12e)
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where subscript ‘2’ denotes condition immediately behind the shock front, and V =
dR/dt denotes the velocity of the shock front. From equations (12), we get:

u2 =
(

1 − 1

γM2

)
V, (13a)

ρ2 = γρ1M
2, (13b)

p2 = ρ1V
2, (13c)

m2 = 4πA
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R3−w, (13d)

q2 = 1

2
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1

γ 2M4
− 1

)
ρ1V

3, (13e)

where M = (ρ1V
2/γp1)

1
2 is the shock-Mach number.

3. Similarity solutions

Following the general similarity analysis we define the two characteristic parameters
‘a’ and ‘b’ with independent dimensions as:

[a] = [A], (14a)

and

[b] =
[
E0

A

]
. (14b)

The single dimensionless independent variable in this case will be:

η =
[
νE0

A

]−1/(5−w)

rt−δ, (15a)

where

δ = 2 + s

5 − w
, (15b)

and ν is a constant such that η assumes the value ‘1’ at the shock front. This gives the
shock propagation law in the explicit form as:

R =
[
νE0

A

]1/(5−w)

tδ. (16)

This gives the shock propagation law as:

V

V0
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(
R

R0

)(δ−1)/δ

, (17)
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where V0 and R0 are the velocity and radius of the shock at the instant of its
generation.

We express the fluid velocity u, density ρ, pressure p, mass m and total heat
flux q as:

u = V U(η), ρ = ρ1D(η), p = V 2ρ1P(η), (18a–c)

m = ρ1R
3N(η), q = V 3ρ1Q(η), (18d–e)

where U , D, P , N and Q are functions of η only.
For the existence of similarity solutions the shock-Mach number M should be con-

stant. Therefore, in the gravitating case

δ = 2

w
and w = 10

s + 4
, (19a, b)

where 1 < s < 6 (1 < w < 2) or 0 ≤ s < 1 (2 < w ≤ 5/2).
In the non-gravitating case

δ = 2

2 − w
and s = 6

2 − w
, (20a, b)

where 0 < w < 2 (3 < s < ∞).
The conservation equations (1) to (4) can be transformed into a system of ordinary

differential equations
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where

G0 = (w − 1)(3 − w)

2πγM2
. (25)

By using equations (6), (7) and (9) in (5) we get:
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Using the equations (8) and (18) in (26) we get:
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Equation (27) shows that the similarity solution of the present problem exists only
when

βC = 1 + 1

2δ − 2
[1 + wδ(δC − 1)] , (28a)

and

βR = 2 − 1

2δ − 2
[1 − wδ(δR + 1)] . (28b)

Therefore, equation (27) becomes:

Q = −X

[
1

D

dP

dη
− P

D2

dD

dη

]
, (29)

where

X =
(

P

D

)(2δ−1)/(2δ−2) [
�Cδ

δ
δ−1 {1+w(δC−1)}P

wδ(δC−1)

2δ−2 DδC− wδ(δC−1)

2δ−2

+�Rδ
δ

δ−1 {1−w(δR+1)}P
−wδ(δR+1)

2δ−2 D
wδ(δR+1)

2δ−2 −δR

]
. (30)

Here, �C and �R are the conductive and radiative non-dimensional heat transfer para-
meters, respectively. The parameters �C and �R depend on the thermal conductivity
K and the mean free path of radiation 1/αR , respectively, and also on the exponents δ

and w, and they are given by:

�C = K0A
δC−1

T0�2ρ
δC

0

(T0�)−
1+wδ(δC−1)

2δ−2

(
νE0

A

) 1+w(δC−1)

(δ−1)(5−w)

, (31a)

and

�R = 16σA−δR−1ρ
δR

0 T 2
0

3αR0�
2

(T0�)
wδ(δR+1)−1

2δ−2

(
νE0

A

) 1−w(δR+1)

(δ−1)(5−w)

. (31b)
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Using the similarity transformations (18) and the equation (16), equations (13) can be
written as:

U(1) =
(

1 − 1

γM2

)
, (32a)

D(1) = γM2, (32b)

P(1) = 1, (32c)

N(1) = 4π

3 − w
, (32d)

Q(1) = 1

2

(
1

γ 2M4
− 1

)
. (32e)

By solving equations (21), (22), (24) and (29) for dD/dη, dP/dη, dQ/dη, dU/dη,
we have:

dD

dη
= − D

U − η

[
dU

dη
+ 2U

η
− w

]
(33)

dP

dη
= −D

[
(U − η)

dU

dη
+

(
δ − 1

δ

)
U + G0N

η2

]
, (34)

dQ

dη
= (U − η)2D − γP

γ − 1

dU

dη
+ D(U − η)

γ − 1

[(
δ − 1

δ

)
U + G0N

η2

]

− γP

γ − 1

(
2U

η
− w

)
− 2Q

η
− wP − 2P

γ − 1

(
δ − 1

δ

)
, (35)

dU

dη
= D(U − η)

P − D(U − η)2

[(
δ − 1

δ

)
U + G0N

η2

− 2PU

Dη(U − η)
+ wP

D(U − η)
− Q

X

]
. (36)

The condition to be satisfied at the inner expanding surface is that the velocity of
the fluid is equal to the velocity of the surface itself. The kinematic condition, from
equations (15) and (18), can be written as:

U(η) = η, (37)

where η is the value of η at the inner expanding surface.
For exhibiting the numerical solutions it is convenient to write the flow variables in

the non-dimensional form as:
u

u2
= U(η)

U(1)
,

ρ

ρ2
= D(η)

D(1)
,

p

p2
= P(η)

P (1)
, (38a–c)

m

m2
= N(η)

N(1)
,

q

q2
= Q(η)

Q(1)
. (38d–e)
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Numerical integration of the differential equations (23), (33), (34), (35), (36) with the
boundary conditions (32) give the solution in the gravitating case and of the differential
equations (33), (34), (35), (36) with G0 = 0 give the solution in the non-gravitating
case.

4. Results and discussion

Distributions of the flow variables in the flow-field behind the shock front are obtained
by numerical integration of the equations (23) and (33) to (36) with the boundary
conditions (32) in the gravitating case and of the equations (33)–(36) in the non-
gravitating case. The expressions for the gravitational parameter G0 and the exponent
in the shock propagation law δ are, in the gravitating case,

G0 = (w − 1)(3 − w)

2πγM2
, δ = 2

w
,

and in the non-gravitating case,

G0 = 0, δ = 2

2 − w
,

where w is the exponent in the law of variation (decrease) of the initial density. Also,
the exponent in the law of variation of the total energy behind the shock ‘s’ is related
with w by s = (10 − 4w)/w and s = 6/(2 − w) in the two cases, respectively. For
the purpose of numerical integration, values of the constant parameters are taken to be
(Ghoniem et al. 1982) γ = 1.4; M = 5; δC = 1, δR = 2; �C = 1, 10, 100; �R = 1,

100, 1000; w = 1.1, 1.2.
Figures 1–10 show the variation of the flow variables u/u2, ρ/ρ2, p/p2, m/m2,

q/q2 with η at various values of the parameters �C, �R, w, and Fig. 11 shows the

Figure 1. Variation of reduced velocity in the region behind the shock front with �C = 1.
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Figure 2. Variation of reduced density in the region behind the shock front with �C = 1.

Figure 3. Variation of reduced pressure in the region behind the shock front with �C = 1.
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Figure 4. Variation of reduced mass in the region behind the shock front with �C = 1.

Figure 5. Variation of reduced total heat flux in the region behind the shock front with �C = 1.
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Figure 6. Variation of reduced velocity in the region behind the shock front with �R = 1.

Figure 7. Variation of reduced density in the region behind the shock front with �R = 1.
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Figure 8. Variation of reduced pressure in the region behind the shock front with �R = 1.

Figure 9. Variation of reduced mass in the region behind the shock front with �R = 1.
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Figure 10. Variation of reduced total heat flux in the region behind the shock front with �R = 1.

Figure 11. Variation of reduced shock velocity with reduced shock radius.



A Self-similar Flow Behind a Shock Wave 67

variation of the reduced shock velocity V/V0 with reduced shock radius R/R0 at
various values of the parameter w. It is observed that, as we move inward from the
shock front towards the inner expanding surface, the reduced fluid velocity u/u2,

reduced density ρ/ρ2 and reduced pressure p/p2 increase, and the reduced mass m/m2

and reduced total heat flux q/q2 decrease, in general. Also, the shock velocity V/V0

increases with the shock radius R/R0.
It is found that the effects of an increase in the value of radiation heat transfer

parameter �R are (from Figs. 1–5 and Table 1):

• to decrease the velocity u/u2, density ρ/ρ2, pressure p/p2 and total heat flux
q/q2 at any point in the flow-field behind the shock;

• to increase the mass m/m2;
• to increase the distance of the inner expanding surface from the shock front (see

Table 1); and
• to decrease the slope of profiles of velocity, density, pressure and mass and to

increase that of total heat flux.

The conduction heat transfer parameter �C has similar effects on the flow-field
behind the shock as the radiation heat transfer parameter �R (see Figs. 6–10 and
Table 2).

The effects of an increase in the density variation exponent w are (from Figs. 1–11
and Tables 1–2):

• to decrease the velocity u/u2 and to increase the mass m/m2 at any point in the
flow-field behind the shock;

• to decrease the density ρ/ρ2 in the gravitating case, in general; and in the non-
gravitational case, to decrease ρ/ρ2 for lower values of �C and �R and to increase
that for higher values of �C and �R;

• to decrease the pressure p/p2 in the gravitating case and to increase that in the
non-gravitating case; and

Table 1. Position of the inner expanding surface η at different
values of �R for �C = 1, γ = 1.4, δC = 1, δR = 2, M = 5 and
w = 1.1, 1.2.

w δ s G0 �R η

1.1 1.8181 5.0909 0.0008644 1 0.9894
100 0.9867

1000 0.9864

1.2 1.6666 4.3333 0.0016379 1 0.9878
100 0.9856

1000 0.9855

1.1 2.2222 6.6666 0 1 0.9880
100 0.9875

1000 0.9868

1.2 2.5 7.5 0 1 0.9872
100 0.9869

1000 0.9864
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Table 2. Position of the inner expanding surface η at different values of �C

for �R = 1, γ = 1.4, δC = 1, δR = 2, M = 5 and w = 1.1, 1.2.

w δ s G0 �C η

1.1 1.8181 5.0909 0.0008644 1 0.9894
10 0.9867

100 0.9864

1.2 1.6666 4.3333 0.0016379 1 0.9878
10 0.9861

100 0.9856

1.1 2.2222 6.6666 0 1 0.9880
10 0.9868

100 0.9866

1.2 2.5 7.5 0 1 0.9872
10 0.9862

100 0.9861

• to decrease the total heat flux q/q2 in the non-gravitating case; and in the gravi-
tational case, to decrease q/q2 for lower values of �C and �R (�C = 1, �R = 1)

and to increase that for higher values of �C and �R;
• to increase the distance of the inner expanding surface from the shock front (see

Tables 1 and 2);
• to decrease the shock velocity V/V0 in the gravitating case, and to increase that

in the non-gravitating case.

The effects of self-gravitational field (from Figs. 1, 2, 3, 5 and 6, 7, 8, 10, 11 and
Tables 1–2) are:

• to increase the velocity u/u2 and the density ρ/ρ2 at lower value of �R and �C ,
and to decrease those at higher values of �R and �C , at any point in the flow-field
behind the shock;

• to decrease the pressure p/p2;
• to increase the total heat flux q/q2; and
• to decrease the shock velocity V/V0.
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Abstract. A few prediction methods have been developed based on
the precursor technique which is found to be successful for forecasting the
solar activity. Considering the geomagnetic activity aa indices during the
descending phase of the preceding solar cycle as the precursor, we predict
the maximum amplitude of annual mean sunspot number in cycle 24 to
be 111 ± 21. This suggests that the maximum amplitude of the upcoming
cycle 24 will be less than cycles 21–22. Further, we have estimated the
annual mean geomagnetic activity aa index for the solar maximum year in
cycle 24 to be 20.6 ± 4.7 and the average of the annual mean sunspot num-
ber during the descending phase of cycle 24 is estimated to be 48 ± 16.8.

Key words. Sunspot number—precursor prediction technique—geo-
magnetic activity index aa.

1. Introduction

Predictions of solar and geomagnetic activities are important for various purposes,
including the operation of low-earth orbiting satellites, operation of power grids on
Earth, and satellite communication systems. Various techniques, namely, even/odd
behaviour, precursor, spectral, climatology, recent climatology, neural networks have
been used in the past for the prediction of solar activity. Many investigators (Ohl
1966; Kane 1978, 2007; Thompson 1993; Jain 1997; Hathaway & Wilson 2006) have
used the ‘precursor’ technique to forecast the solar activity. Ohl (1966) noted that the
geomagnetic activity in the declining phase of a sunspot cycle is found to be well
correlated with the sunspot maximum of the next cycle. Using the geomagnetic activity
aa index as the precursor, Jain (1997) predicted the maximum annual mean sunspot
number for cycle 23 to be 166.2 which is found to be higher than the observed value of
120. In fact, he did not propose the error estimate in the predicted number otherwise
it could have been within error limits.

In this view, we predict the maximum amplitude of solar cycle 24 using the pre-
cursor technique described by Jain (1997) in this paper. Section 2 describes about the
acquisition of data of annual mean sunspot number and the geomagnetic activity aa
index used in the current investigation. In section 3, we explain the analysis and results
obtained. We briefly discuss and conclude our results in section 4 in the light of other
investigations.

71
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2. Data

There are several indices that are used as indicators of geomagnetic activity: Kp, Dst,
aa, ap, Ap, and AE. The geomagnetic activity indices, viz., Ap and aa are used as
precursors to estimate the solar activity in future. In the present analysis, we exploit
aa indices as geomagnetic precursor to estimate the maximum amplitude of upcoming
solar cycle 24. These aa indices are derived using data from two nearly antipodal
observatories, where magnetograms were available since 1868. The aa index represents
the activity level at an invariant magnetic latitude of about 50◦. The two observatories
were Greenwich (1868–1925) in Northern Hemisphere and Melbourne (1868–1919)
in Southern Hemisphere. Greenwich was replaced by Abinger in 1926 and by Hartland
in 1957. Melbourne was substituted by Toolangui in 1920 and by Canberra in1980.
The data is normalized by cross-correlation over the instruments distributed over the
globe and over the time, and therefore may be considered homogeneous over the period
under current study. The daily mean of the geomagnetic aa index has been obtained
from http://isgi.cetp.ipsl.fr/ for the period 1868–2008.

The relative sunspot number (International Sunspot Number), Ri, is an index of the
activity of the entire visible disc of the Sun. It is determined each day from an obser-
ving station without reference to preceding days using the form Ri = K(10g + s),
where g is the number of sunspot groups and s is the total number of distinct
spots. The scale factor K (usually less than unity) depends on the observer and is
intended to affect the conversion to the scale originated by Wolf. Therefore, the rela-
tive sunspot number Ri (international) is derived from the statistical treatment of
data originating from more than twenty-five observing stations. The observed daily
sunspot number for the period 1868–2008 was acquired from the following website
http://www.ngdc.noaa.gov/stp/SOLAR/ftpsunspotnumber.html.

3. Analysis and results

3.1 Prediction of the maximum annual mean sunspot number

Considering the geomagnetic activity aa index as the precursor, the maximum ampli-
tude of the solar cycle 24 is predicted using the method employed by Jain (1997). The
temporal behaviour of observed annual mean sunspot number (red) and annual mean
aa index (blue) for solar cycles 11 to 23 considered in our investigation is shown in
Fig. 1. We observed from the figure that the annual mean aa index ranges from 5.7
(in 1901) to 36.6 (in 2003) which is an indicator of minimum and maximum geomag-
netic activity respectively, during the period of 1868–2008. Whereas, the annual mean
sunspot number varies between 1.4 (in 1913) and 190.2 (in 1957). Sunspot numbers
rise steadily to maximum and then fall steadily to a low level during each sunspot
cycle, whereas geomagnetic indices (Ap or aa) show two or more maxima per cycle,
one near or before the sunspot maximum and others in the declining phase, and the gap
between the two primary maxima (the Gnevyshev gap) results in the quasi-biennial
and quasi-triennial periodicities observed in the geomagnetic indices (Kane 1997).

As the annual mean sunspot number for the year 2008 (until October) is 2.86,
which is within the range of sunspot minimum value, we have considered the sunspot
minimum year for solar cycle 23 to be 2008 in the present study. The annual mean aa
index and annual mean sunspot number are obtained by averaging the monthly mean
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Figure 1. The observed annual mean aa index (blue) and annual mean sunspot number (red)
for the period of 1868–2008. Note that the annual mean sunspot number for 2008 is 2.86.

Figure 2. Observed amplitude (Rn+1)
max is plotted against (aa∗

n)dsc. Correlation coefficient is
found to be r = 0.85.

of geomagnetic activity index aa and monthly mean of sunspot number respectively
for the period 1868–2008.

For nth cycle, we determined (aa∗
n)dsc, an average of the geomagnetic aa index, of

the year in which observed sunspot is minimum and four years preceding to it (i.e.,
total 5 years). Then we compared (aa∗

n)dsc of the nth cycle with the observed maximum
annual mean sunspot number (Rn+1)

max of (n+ 1)th cycle and obtained a relationship
between (aa∗

n)dsc and (Rn+1)
max which is shown in Fig. 2. The best linear fit to the

data with the correlation coefficient of 0.85 led us to derive an asymptotic relation as
follows:

(Rn+1)
max = 6.138(aa∗

n)dsc − 1.1. (1)

Using relation (1), we have obtained the maximum annual mean sunspot number for
cycles 12 to 23, which are almost in agreement with the observed values. The standard
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Figure 3. Representation of observed values of aa∗ as a function of (Rn)
max of the same cycle.

Correlation coefficient is 0.87.

deviation σ = ±21 is found from the difference between the calculated and observed
values. The relation (1) enabled us to predict the maximum annual mean sunspot
number for cycle 24 (R23+1)

max to be 111 ± 21. This suggests that the maximum
amplitude will be less than that of cycles 21–22. Our prediction of the maximum
amplitude is in good agreement with the predictions made by a few earlier investigators
(Wang et al. 2002; Echer et al. 2004; Dabas et al. 2008; Hiramath 2008; Javaraiah
2008) while in contrast to Hathaway and Wilson (2006).

3.2 Prediction of the annual mean geomagnetic
activity index for the solar maximum year

Next, in order to predict the level of geomagnetic activity for the sunspot maxi-
mum year in cycle 24, we obtained aa∗, which is the annual mean of aa during
the year when sunspot is maximum for each cycle 11–23. And then the rela-
tion between the observed (Rn)

max, and aa∗ is studied. Figure 3 represents the
relationship between (Rn)

max and aa∗ for a given cycle. A linear fit is obtained
between the two with a correlation coefficient of ∼ 0.87 which can be expressed
as:

aa∗ = 0.1082(Rn)
max + 8.6158. (2)

Using the above relation, we predicted aa∗ for each cycle 11–23, which is in
good agreement with the observations. Considering the predicted amplitude of
cycle 24 to be 111 ± 21 (section 3.1), it enabled us to estimate the aa∗ during the
sunspot maximum year for the cycle 24 to be 20.6 ± 4.7. This predicted value
of aa∗ is lower compared to the observed 30.47 and 24.82 for cycle 22 and 23
respectively. This depicts the decreasing trend of geomagnetic activity during the
sunspot maximum year of the upcoming cycle 24 as compared to previous two
cycles.
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Table 1. Period of descending phase and
the corresponding average of observed
annual mean sunspot number for solar
cycles 11 to 23.

Sunspot Descending
cycle phase (Rn)dsc

11 1871–1878 46
12 1884–1889 28
13 1894–1901 33
14 1906–1913 30
15 1918–1923 38
16 1929–1933 28
17 1938–1944 53
18 1948–1954 68
19 1958–1964 84
20 1969–1976 56
21 1980–1986 79
22 1990–1996 70
23 2001–2008 47

3.3 Prediction of average of the annual mean
sunspot number during the descending phase

Further, we have predicted (R24)dsc, the average of annual mean sunspot number of the
descending phase for solar cycle 24. The descending phase is defined as the period from
the year following the sunspot maximum to the year of sunspot minimum for a solar
cycle. We determined the average of annual mean sunspot number of the descending
phase, (Rn)dsc for each cycle from 11 to 23 using the following relation:

(Rn)dsc = 1

j

j∑

i=1

, Ri

where i = 1, 2, . . . , j , and j is the number of years in the descending phase, and Ri is
the annual mean of sunspot number. The period of descending phase for solar cycles
11 to 23 and the corresponding (Rn)dsc are given in Table 1.

We found that the (Rn)dsc of a given solar cycle is well related to the maximum
annual mean sunspot number (Rn)

max for that cycle as shown in Fig. 4. The linear fit
with a statistically significant correlation coefficient of 0.93 is obtained which can be
expressed in the form of an empirical relation:

(Rn)dsc = 0.4651(Rn)
max − 4.0141. (3)

Using relation (3), the average of the annual mean sunspot number during the
descending phase for cycles 11 to 23 is calculated and the standard deviation σ deter-
mined from the difference of the observed and predicted value is found as ±7. The
relation (3) enabled us to estimate (R24)dsc to be 48 ± 16.8 (considering error ±21
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Figure 4. (Rn)dsc is plotted against (Rn)
max for solar cycles 11 to 23. Correlation coefficient is

found to be remarkable and is 0.93.

in estimate of (R24)
max) which is comparable to the observed annual mean sunspot

number during the descending phase of cycle 23 (cf. Table 1). This also suggests that
the sunspot activity during the descending phase of the upcoming solar cycle 24 will
decline by about 30–40% as compared to the cycles 18, 19, 21 and 22 (cf. Table 1).

4. Discussion and conclusion

In the current investigation we have predicted maximum amplitude of annual mean
sunspot number of upcoming solar cycle 24 to be 111±21 by the ‘precursor technique’
using the long term data since 1868 to 2008. Further, we predicted annual mean aa
index for the sunspot maximum year to be 20.6 ± 4.7. The average of annual mean
sunspot number during the descending phase is estimated to be 48 ± 16.8, when the
error of ±21 in (R24)

max is considered.
The following investigators have used various techniques to determine the maximum

amplitude of annual mean sunspot number for solar cycle 24 and are in agreement
with our prediction. Javaraiah (2008) has predicted the amplitude of upcoming cycle
24 to be 103 ± 10 (or 87 ± 7) using the north–south asymmetry in the area sum
of the previous cycle. Using a modified precursor method, Dabas et al. (2008) have
predicted the maximum amplitude of about 124 ± 23. Hiramath (2008) predicted
the amplitude of cycle 24 to be 110 ± 11 using the physical parameters (long-term
amplitudes, frequencies, phases, decay factor) of the previous 22 solar cycles and by
an autoregressive model. On the basis of extrapolation of sunspot number spectral
components, Echer et al. (2004) have predicted the maximum to occur in 2012 (115±
13.2) or to occur in 2013 (117±13.2). Wang et al. (2002) made a preliminary prediction
of 83.2–119.4 for the maximum amplitude of cycle 24 using statistical characteristics
of solar cycles which is in agreement with our prediction.

Based on Ohl’s precursor method, Kane (2007) has given a preliminary prediction
of Rz (max) to be 142±24 (or 124±26, if aa values are in error by 3 nT before 1957).
Hathaway & Wilson (2006) based on the analysis of geomagnetic aa indices predicted
the peak smoothed sunspot number to be 160±25, which is higher than our prediction.
The difference in prediction is due to the technique employed by Hathaway & Wilson
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(2006) and ours. They considered the smoothed interplanetary component of the aa
index which peaked in October 2003 whereas we have taken the annual mean of aa
index from January 2004 to September 2008 from the descending phase of cycle 23,
when the geomagnetic activity was low.

Many investigators have used different techniques to find the upcoming solar cycle
24. According to Dikpati et al. (2006), the upcoming cycle 24 will be about 30–50%
stronger (Rz = 155–180) using modified flux transport solar dynamo model and the
data of sunspot area. Choudhuri et al. (2007) modelled the last few solar cycles by
‘feeding’ observational data of the Sun’s polar magnetic field into their solar dynamo
model. They predict that cycle 24 will be about 35% weaker than cycle 23.

We conclude that our prediction of maximum amplitude, annual mean aa index for
the sunspot maximum year and average of annual mean sunspot number during the
descending phase of solar cycle 24 will hold good.
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Abstract. Space observations of solar flares such as those from Yohkoh,
SOHO, TRACE, and RHESSI have revealed a lot of observational evidence
of magnetic reconnection in solar flares: cusp-shaped arcades, reconnection
inflows, plasmoids, etc. Thus it has been established, at least phenomeno-
logically, that magnetic reconnection does occur in solar flares. However, a
number of fundamental questions and puzzles still remain in the physics of
reconnection in solar flares. In this paper, we discuss the recent progresses
and future prospects in the study of magnetic reconnection in solar flares
from both theoretical and observational points of view.

Key words. Flares—magnetic reconnection—magnetohydrodynamics.

1. Introduction

Magnetic reconnection is believed to be a fundamental process in various energetic
phenomena in space and astrophysical plasmas (Tajima & Shibata 1997; Priest &
Forbes 2000). Although the idea of magnetic reconnection for explaining the energy
release in solar flares had been proposed many decades ago (Parker 1957; Sweet
1958) it was after Yohkoh (Ogawara et al. 1991) observations that the reality of mag-
netic reconnection occurring during solar flares was established. Examples of evi-
dence for reconnection include cusp-shaped post-flare loops (Tsuneta et al. 1992)
a hard X-ray source above flaring loops (Masuda et al. 1994), plasmoid ejections
in impulsive flares (Shibata et al. 1995), and supra-arcade downflows (McKenzie &
Hudson 1999). Recent observations from SOHO, TRACE and RHESSI have been
producing further evidence; an outstanding example is the discovery of reconnec-
tion inflows (Yokoyama et al. 2001; Lin et al. 2005; Narukage & Shibata 2006).
See Shibata (1999) and Martens (2003) for reviews of observational evidence of
reconnection.

The idea of magnetic reconnection has been applied, not only to solar flares, but
to various explosive phenomena in the solar atmosphere (e.g., Shibata et al. 1992;

∗Present address: Unit of Synergetic Studies for Space, Kyoto University, Japan. e-mail:
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Innes et al. 1997; Pariat et al. 2004). However, the theories of magnetic reconnection
itself still have fundamental difficulties. The authors’ list of the remaining outstanding
problems in the physics of reconnection is as following:

• How is fast reconnection realized in a highly conducting plasma?
• What is and what determines the rate of reconnection?
• Is reconnection in the solar corona Petschek type, generalized Sweet–Parker type,

or other type? Can we find slow and fast shocks?
• What is the nature of coupling between micro and macro scales?
• What is the origin of anomalous resistivity?
• What is the acceleration mechanism of non-thermal particles?
• What is the energy build-up process and the triggering mechanism of reconnection

in solar flares ?
• What are the differences of reconnection in different plasma environment?
• What are the three-dimensional topology and dynamics?

We are aware that this is a biased list, perhaps biased towards macroscopic aspects.
Also, many of the listed items are not independent but closely related to each other.
In the rest of the paper we will review the previous achievements and future prospects
on the selected issues from the list.

2. How and why reconnection is fast?

The time scale of energy release in a solar flare is typically 10–100 τA (100 ∼1000 s),
where τA = L/vA is Alfvén transit time, L is the characteristic size of the system and
vA = B/

√
4πρ is the Alfvén velocity. Since the resistivity η is extremely small in the

solar corona, the diffusion time τη = L2/η is huge (say, 100 years). Therefore, we
need a mechanism that can drastically increase the rate of energy release, i.e., magnetic
reconnection.

It is well known that Sweet–Parker reconnection is too slow to explain solar flares.
In Sweet–Parker reconnection, the non-dimensional reconnection rate is given by
vin/vA = w/L = √

S, where vin is the inflow velocity, w and L are the thickness
and the length of the current sheet, and S = LvA/η is the Lundquist number (mag-
netic Reynolds number defined with vA). If one uses classical Spitzer resistivity in the
corona, S is as large as 1014, and thus the reconnection rate is as small as 10−7.

Sweet–Parker reconnection is slow because the aspect ratio w/L of the diffusion
region (current sheet) is small and therefore plasma exhausting by reconnection outflow
is insufficient. In order to overcome this problem, Petschek (1964) considered that
the diffusion region is localized in a small region. Then the plasma is heated and
accelerated through two pairs of MHD slow mode shocks that extend from the diffusion
region. Petschek showed that for large S the reconnection rate is given by vin/vA =
π/8 log S ≈ 0.01–0.1. This is fast enough to energize solar flares. MHD simulations
have demonstrated that such Petschek-type (i.e., with slow shocks) fast reconnection
is realized when resistivity is spatially localized (e.g., Ugai & Tsuda 1977; Yokoyama
& Shibata 1994), though reconnection is usually highly intermittent in non-steady
simulations (e.g., Kliem et al. 2000; Tanuma et al. 2001).

How fast is reconnection in real solar flares? Attempts to measure the reconnection
rate in flares have been made by many authors (Dere 1996; Tsuneta 1996; Ohyama
& Shibata 1997; Isobe et al. 2002, 2005; Saba et al. 2006; Nagashima & Yokoyama
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2006). It is not straight forward to measure the reconnection rate because measure-
ment of coronal magnetic field Bcorona, and inflow velocity vin are difficult. However,
separation of chromospheric flare ribbons provides a good measure of reconnection
rate (Forbes & Lin 2000). Assuming that reconnection is steady and two-dimensional,
the reconnected magnetic flux per unit time is given by:

Bcoronavin = Bfootvfoot, (1)

where Bfoot and vfoot are the magnetic field strength and separation velocity of chro-
mospheric flare ribbons. Isobe et al. (2002, 2005) considered this equation and the
energy release rate H given by the Poynting flux of reconnection inflow,

H = 2
B2

corona

4π
vinAr, (2)

where Ar is the area of reconnection inflow. Using these two equations, they calcu-
lated the non-dimensional reconnection rate vin/vA for several flares from available
observations. The calculated values fell in the range of 0.001–0.1. Other studies cited
above found similar values, as summarized in Table 4 of Narukage & Shibata (2006).

Direct evidence of reconnection inflows was first found in EUV images of a limb
flare observed by SOHO/EIT (Yokoyama et al. 2001). Narukage & Shibata (2006)
found further such examples. The estimated reconnection rate was 0.001–0.07. In these
studies, the inflow velocity vin was measured from the apparent motion in the images
and hence may not be the real plasma velocity (Chen et al. 2004). Spectroscopic
detection of reconnection inflow is therefore important, but such observations are still
rare (Lin et al. 2005; Hara et al. 2006). It is obviously an important target of EUV
imaging spectrometer (EIS) onboard Hinode (Solar-B).

In summary, the previous quantitative analyses of reconnection rate have indi-
cated that the reconnection rate is in the range of 0.001–0.1. This is fast enough to
explain the energy release rate of flares and roughly consistent with Petschek-type
reconnection. The lower values in some cases (∼0.001) are probably the spatial and
temporal averages. As discussed further in the next section, the reconnection pro-
cess is likely to be quite intermittent, both in time and in space. Temporal and spatial
variation of reconnection rate should be studied in future using high resolution data
(Saba et al. 2006).

Another important observational challenge is detection of slow shocks. The cusp-
shaped loops and Y-shaped structure found by Soft X-ray Telescope aboard Yohkoh
may be the reconnection slow shocks (Tsuneta et al. 1992; Shiota et al. 2003), but
further evidence, e.g., jump in plasma density, pressure, and velocity, is obviously
needed. Hinode/EIS will be a strong tool for this purpose (Brooks et al. 2004; Shiota
et al. 2004).

3. Macro–micro coupling

One of the most fundamental problems of Petschek-type MHD reconnection is the
nature and origin of localized diffusion region. A localized resistivity may be realized
by an anomalous resistivity caused by wave-particle interactions or kinetic instabili-
ties. Although the microscopic origin of such an anomalous resistivity has not been
clarified, magnetospheric observations (e.g., Sergeev et al. 1993), particle simulations
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(e.g., Horiuchi & Sato 1999), and laboratory experiments (e.g., Ono et al. 1997) indi-
cate that fast magnetic reconnection is initiated when the thickness of the current sheet
becomes as thin as the ion inertia length or the ion Larmour radius, where kinetic
effects of the plasma becomes significant.

However, both the ion inertia length and ion Larmour radius are of the order of
102 cm, while the characteristic size of solar flares is about 109 cm. This is a big
difference from the magnetospheric case, where the ratio of global scale to ion scales is
of the order of 10–100. See Terasawa et al. (2000) for a comparison of solar flares and
magnetospheric substorms. How to link this huge gap between different scales is the
most challenging and fundamental problem in reconnection physics. Perhaps there are
some meso-scale structures that connect the global and microscopic scales?

Observations give us some hints to tackle this problem. As mentioned already,
reconnection in solar flares is quite intermittent. This is inferred from fine structures in
flare ribbons (e.g., Kitahara & Kurokawa 1990; Fletcher et al. 2004) and fast temporal
variation of hard X-ray and radio lightcurves (e.g., Aschwanden et al. 1996; Karlický
et al. 2005). Such spatial and temporal fine structures suggest the existence of fine
structures in the reconnecting current sheet.

Another significant observational fact is the correlation of reconnection and plas-
moid ejection. Almost all the explosive events in the solar corona is accompanied by
ejection of plasma, from coronal mass ejections to microflares (e.g., Shibata et al.
1995; Innes et al. 1997; Zhang et al. 2001; Sakajiri et al. 2004; Asai et al. 2004).
Careful examination of plasmoid motion and flare lightcurve have revealed that the
plasmoid had started to move slowly well before the impulsive phase of the flare,
and then suddenly accelerated and ejected during the impulsive phase (Ohyama &
Shibata 1997; Chifor et al. 2006). From such observations, Shibata & Tanuma (2001)
suggested ‘plasmoid-induced’ reconnection model, in which fast reconnection and
plasmoid ejection are dynamically coupled.

Karlický et al. (2005) examined the Fourier power spectra of pulsating structure
observed in 500–1500 MHz, which is interpreted as the result of plasmoid ejection
from reconnection site. They found power law spectra in the short period (0.06–0.2 s)
range. This indicates that there is no characteristic scale in reconnection and hence the
reconnecting current may have a turbulent, possibly fractal structure as suggested by
Tajima & Shibata (1997). Similar picture of a reconnecting current sheet, i.e., full of
many small plasmoid, has been given by Aschwanden (2002). Such turbulent structure
may give a way to link the microscopic and macroscopic scales in reconnection.

What can be the origin of such turbulent structures in a current sheet? Shibata &
Taunua (2001) suggested multiple tearing instability. This is a ‘top-down’ process,
approaching from macro-scale to micro-scale by an MHD instability. For magne-
tospheric reconnection, Hoshino et al. (1994) proposed an opposite approach, i.e.,
formation of large-scale plasmoid by bottom-up process from microscopic scales.
Presumably both happen at the same time in the solar case.

A three-dimensional MHD simulation carried out by the authors provides an inter-
esting result that may be related to this problem (Isobe et al. 2005, 2006). Figure 1
shows three-dimensional visualizations of the MHD simulation of magnetic recon-
nection between an emerging flux and pre-existing coronal field. It was shown that
the top of the emerging flux becomes unstable to the magnetic Rayleigh–Taylor insta-
bility in the corona. As the Rayleigh–Taylor instability grows, an interchanging, fila-
mentary structure is created in the emerging flux, which is similar to an arch filament
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Figure 1. Three-dimensional visualization of the result of MHD simulation of magnetic recon-
nection between an emerging flux and a pre-existing coronal field. Left: Isosurface of plasma
pressure and a selected magnetic field lines. Right: Isosurfaces of the magnitude of velocity,
corresponding 60 km s−1 (transparent) and 120 km s−1.

system observed in Hα. See Isobe et al. (2006) for details of the simulation. Conse-
quently, the current sheet between the emerging flux and coronal field also undergoes
interchanging. Tearing instability locally occurs in the current sheet, creating many
small plasmoid as shown in the left panel of Fig. 1. This is remarkably similar to the
cartoon by Aschwanden (2002, Fig. 47) in which many plasmoids exist in a recon-
necting current sheet. After the ejection of these plasmoids, fast reconnection occurs
in temporally and spatially intermittent way. The right panel shows the structure of
the reconnection outflows. Many narrow jets are ejected from the localized diffusion
regions.

Thus, the MHD simulation has demonstrated the turbulence excitation and asso-
ciated reconnection in a self-consistent way. In this case, the origin of turbulence is
an ideal MHD instability, namely the magnetic Rayleigh–Taylor instability. From
this simulation result, we conjecture that a possible scenario to link the micro and
macro scales is as follows. First, small scale structure is created by ideal MHD
instabilities such as Rayleigh–Taylor instability or Kelvin–Helmholtz instability
(top-down process). When the turbulence cascades down to the ion scale, tearing and
reconnection are initiated at such small scale. Then the small scale islands become
bigger by coalescence (bottom-up process).

Of course, this is still a rough conjecture. Direct numerical simulation of such
processes requires multi-scales and multi-physics. It is a big challenge of the theoretical
and numerical studies in the next decades.

4. Reconnection in the lower atmosphere

In this section we briefly mention the magnetic reconnection in the lower atmosphere of
the Sun. Reconnection is likely to be occurring in the photosphere and chromosphere.
Canceling magnetic features (Litvinenko & Martin 1999) and Ellerman bombs (Pariat
et al. 2004; Isobe et al. 2007) are believed to be the manifestations of such lower level
reconnection. Chromospheric reconnection may play a significant role in the coronal
heating (Sturrock 1999).

Although the photosphere and the chromosphere are weakly ionized regions and
therefore the resistivity is relatively large, the Lundquist number is still larger than 104.
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Reconnection in such plasma environment is also of interest in some astrophysical
systems such as protoplanetary disks (Inutsuka & Sano 2005), but it is still poorly
understood (Litvinenko 1999; Chen et al. 2001; Chae et al. 2002). Theoretical and
observational studies on this subject are therefore desired. The Solar Optical Tele-
scope on Hinode will provide further detailed observations of the lower atmospheric
reconnection.

5. Conclusion

In this paper we have discussed a selected issue on the outstanding questions of the
physics of magnetic reconnection. Due to the space restriction we did not discuss some
very important issues such as particle acceleration (Aschwanden 2002) and three-
dimensionality (Priest & Forbes 1992; Isobe et al. 2002; Tripathi et al. 2006).

The solar atmosphere provides an excellent laboratory to study the basic plasma
physics. Since magnetic reconnection is of great interest not only for solar physics but
also for much larger fields of plasma physics and astrophysics, it is desirable to utilize
the solar observation to study reconnection, not only to utilize reconnection to interpret
the solar phenomena. Recently launched Hinode satellite and other upcoming projects
will provide us further advanced data, from which we may get deeper insight of the
basic physics of reconnection.
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Abstract. About 25 years ago, in Paper 12 of this series, the author
presented a spectroscopic orbit for 6 Boo. The velocity amplitude of little
more than 1 km s−1 was much smaller than for any star whose orbit had been
determined up till that time. Although it was objectively demonstrated that
the orbit was very secure, a few years ago subjective misgivings prompted
the author to restore the star to his observing programme. New observations
of much higher precision confirm not only the spectroscopic-binary nature
of 6 Boo but also, with almost astonishing fidelity, the elements already
given for it.

Key words. Radial velocities—spectroscopic binaries—orbits—stars:
individual—6 Boo.

1. Introduction

This series of papers, which has been in abeyance for the past few years, has given
spectroscopic orbits for 34 of the stars discovered (or, in one or two cases, confirmed)
to be binaries in the course of the comprehensive survey by Yoss & Griffin (1997) of
all the late-type stars that are listed in the Henry Draper Catalogue and are within 15◦
of the North Galactic Pole (NGP). Paper 12 of the series (Griffin 1985) presented the
orbit of 6 Boo (HR 5201, HD 120539; also sometimes known as e Boo (Baily 1845;
Goldin & Makarov 2007)), a fifth-magnitude K4 III star near the following margin of
the NGP field and the ninth-brightest of the stars qualifying for inclusion in the NGP
survey.

The observations underlying the orbit in Paper 12 were all made at the Cambridge
36-inch reflector with the original radial-velocity spectrometer (Griffin 1967)—the
instrument with which the writer developed the cross-correlation method of measuring
radial velocities, which has of course subsequently been universally adopted and has
been responsible for most of the evidence for such disparate objects as black holes and
extra-solar planets. Although it had been developed as an experimental instrument,
it remained in actual research use for 25 years, during which time, of course, it became
substantially outmoded. The radial-velocity traces were drawn in real time by a pen
on a continuous paper chart, and the reductions were done by measurements made
on the chart by hand and eye. Even so, it gave velocities with characteristic errors a
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little under 1 km s−1, which was regarded as a handsome accuracy at the time that the
spectrometer was developed.

The orbit so determined for 6 Boo was the most ambitious one that was ever
attempted with the original instrument—it had a velocity amplitude not much more
than 1 km s−1, which was about twice the r.m.s. residuals from the orbit. The small-
est amplitude found for any plausible spectroscopic orbit previously was 2.39 km s−1

(φ Her, Aikman 1976). The 6 Boo paper demonstrated how the orbital period, of a
little under 1000 days, seemed to be visible in the velocities when they were simply
plotted directly against time. Moreover, a statistical argument (kindly vetted by a pro-
fessional statistician who had been good enough to correct me (Bassett 1978) after
I made serious mistakes in the early papers in another series) showed that the orbit
was altogether unassailable: a variance-ratio test gave an F ratio of 17.2 in a situation
where even the 0.1%-significance level was only 4.9.

All the same, from time to time the writer found himself hoping that the star really
does have an orbit much like the one that he asserted for it, and despite the objec-
tive evidence that it does there came a time when he decided to put it back on his
observing programme, which was then being carried out at the same telescope as
before but with a spectrometer analogous to the Coravel of Baranne et al. (1979),
which gives velocities of a substantially higher quality than those of the original
instrument.

2. Radial-velocity measurements and orbit

There are 35 new Coravel observations, made in the years 2004–2009; they are set
out in Table 1. An improved scheduling scheme has ensured that they are distributed
tolerably uniformly in phase. The earlier paper (Griffin 1985) listed the 54 measure-
ments made with the original radial-velocity instrument and one each with the Palo-
mar (Griffin & Gunn 1974) and Dominion Astrophysical Observatory (DAO; Fletcher
1982) spectrometers. It also listed a few velocities made at Lick (Campbell & Moore
1928) and Mount Wilson (Adams et al. 1929; Abt 1973) which were zero-weighted in
the solution of the orbit. Since that time one velocity has been published from Ames by
Beavers & Eitter (1986), and a listing referred to by de Medeiros & Mayor (1999) has
given two more. None of the mentioned measurements has been included in Table 1
other than the 35 new ones obtained at Cambridge; the new orbit presented below
utilizes the writer’s own earlier data given in Paper 12, but none of the others, which
could be considered to be too sparse and too heterogeneous to contribute usefully. It
should be explained that the cycle numbers in Table 1 (the numbers before the decimal
point in the ‘Phase’ column) start at the periastron passage preceding the first obser-
vation made with the original spectrometer in 1966; although the table gives only the
recent Coravel measurements, the earlier ones were also used in the computation of
the orbit, albeit with low weight.

In the new solution, the Cambridge Coravel velocities have been given unit
weight, while those made with the original spectrometer have been weighted 1/20,
as is needed to bring their weighted variance approximately into line with that of
the new observations. The single Palomar and DAO measures have been attributed
half-weight. Thus fully 90% of the total weight of the data going into the new
orbit is accounted for by the fresh observations, so the result could be considered
to all intents and purposes to be an independent orbit. It does, however, benefit by
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Table 1. New Coravel radial-velocity observations of 6 Boötis.

Date (UT) MJD Velocity Phase (O − C)

(km s−1) (km s−1)

2004 May 23.00 53148.00 −1.3 14.935 +0.1
June 25.90 181.90 −1.0 0.970 +0.2
Aug. 7.86 224.86 −1.2 15.016 +0.1

2005 Jan. 9.25 53379.25 −2.9 15.180 +0.1
Mar. 25.14 454.14 −3.5 0.259 −0.2
Apr. 22.06 482.06 −3.3 0.289 +0.1
May 27.97 517.97 −3.3 0.327 +0.1
July 9.90 560.90 −3.8 0.372 −0.3
Aug. 15.87 597.87 −3.7 0.411 −0.2
Dec. 17.27 721.27 −3.5 0.542 −0.1

2006 Jan. 29.25 53764.25 −3.3 15.588 0.0
Mar. 1.17 795.17 −3.2 0.620 0.0
Apr. 4.09 829.09 −3.2 0.656 −0.1
May 9.97 864.97 −2.9 0.694 +0.1
June 3.98 889.98 −3.0 0.721 −0.1
July 2.95 918.95 −2.9 0.752 −0.1
Aug. 7.87 954.87 −2.6 0.790 −0.1
Nov. 26.27 54065.27 −1.6 0.907 0.0

2007 Jan. 14.28 54114.28 −1.3 15.958 −0.1
Feb. 4.21 135.21 −1.5 0.981 −0.3
Mar. 2.20 161.20 −1.4 16.008 −0.1
Apr. 1.08 191.08 −1.4 0.040 +0.1
May 1.04 221.04 −1.9 0.072 0.0
June 1.03 252.03 −2.4 0.104 −0.1
July 7.95 288.95 −2.7 0.144 0.0
Sept. 6.81 349.81 −3.3 0.208 −0.2

2008 Feb. 2.22 54498.22 −3.4 16.365 +0.1
25.19 521.19 −3.5 0.390 0.0

Mar. 31.12 556.12 −3.5 0.427 0.0
Apr. 24.06 580.06 −3.4 0.452 +0.1

19.02 605.02 −3.4 0.479 +0.1
June 25.92 642.92 −3.3 0.519 +0.1

2009 Apr. 2.08 54923.08 −2.3 16.816 +0.1
May 4.03 955.03 −2.1 0.849 0.0

29.97 980.97 −1.9 0.877 0.0

having its period much improved by the increase of the time base from 5 to 43
years by the inclusion at some level of the writer’s older observations; the period
obtained from the new data in isolation is 941 ± 7 days. The new solution is plotted
in Fig. 1; its elements are given in Table 2, with those determined previously for
comparison.
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Figure 1. Velocity curve computed from the new orbit for 6 Boötis, with the measured radial
velocities plotted. The measurements made with the Cambridge Coravel are plotted as filled
squares, whereas those made with the original spectrometer (weighted 1/20 in the solution of
the orbit) appear as open circles. Single observations from Palomar and the DAO, both weighted
1/2, are shown as a circle with a plus in it, and an open star, respectively.

Table 2. Orbital elements for 6 Boötis.

Element Griffin (1985) This paper

P (days) 944 ± 8 943.7 ± 1.1
T (MJD) 44739 ± 31 53210 ± 10

γ (km s−1) −2.63 ± 0.09 −2.734 ± 0.022

K (km s−1) 1.19 ± 0.15 1.170 ± 0.031
e 0.41 ± 0.09 0.357 ± 0.025
ω (degrees) 359 ± 15 16 ± 5
a1 sin i (Gm) 14.1 ± 1.9 14.2 ± 0.4
f (m) (M�) 0.00013 ± 0.00005 0.000128 ± 0.000011
r.m.s. residual 0.6 0.13

(wt. 1) (km s−1)

3. Discussion

Table 2 and Fig. 1 both demonstrate how very well the old orbit is vindicated by the
new one. Arguably the most important elements, P and K , are almost identical in
the two solutions. Only two of the seven quantities for which a direct comparison can
be made in Table 2, the γ -velocity and ω, differ by more than their joint standard
deviation, and then only barely; that is in any case altogether right and proper, since
almost one-third of a normal distribution lies outside ±1σ .
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Abstract. The value of Hubble parameter (H0) is determined using the
morphologically type dependent Ks-band Tully–Fisher Relation (K-TFR).
The slope and zero point are determined using 36 calibrator galaxies with
ScI morphology. Calibration distances are adopted from direct Cepheid dis-
tances, and group or companion distances derived with the Surface Bright-
ness Fluctuation Method or Type Ia Supernova. It is found that a small
morphological type effect is present in the K-TFR such that ScI galax-
ies are more luminous at a given rotational velocity than Sa/Sb galaxies
and Sbc/Sc galaxies of later luminosity classes. Distances are determined
to 16 galaxy clusters and 218 ScI galaxies with minimum distances of
40.0 Mpc. From the 16 galaxy clusters a weighted mean Hubble parameter
of H0 = 84.2 ± 6 km s−1 Mpc−1 is found. From the 218 ScI galaxies a
Hubble parameter of H0 = 83.4 ± 8 km s−1 Mpc−1 is found. When the
zero point of K-TFR is corrected to account for recent results that find a
Large Magellanic Cloud distance modulus of 18.39±0.05, a Hubble para-
meter of 88.0 ± 6 km s−1 Mpc−1 is found. Effects from Malmquist bias
are shown to be negligible in this sample as galaxies are restricted to a
minimum rotational velocity of 150 km s−1. It is also shown that the results
of this study are negligibly affected by the adopted slope for the K-TFR,
inclination binning, and distance binning. A comparison with the results
of the Hubble Key Project (Freedman et al. 2001) is made. Discrepancies
between the K-TFR distances and the HKP I-TFR distances are discussed.
Implications for �-CDM cosmology are considered with H0 = 84 km s−1

Mpc−1. It is concluded that it is very difficult to reconcile the value of H0

found in this study with ages of the oldest globular clusters and matter den-
sity of the universe derived from galaxy clusters in the context of �-CDM
cosmology.

Key words. Distance scale—galaxies: distances and redshifts.

1. Introduction

Hubble (1929) discovered the existence of a linear relationship between the radial
velocity (cz) of a galaxy and the distance to the galaxy estimated from absolute mag-
nitude criteria. The Hubble Law is a key component of cosmological theory and
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the current value of the Hubble parameter (H0) provides an important constraint on
cosmological models (e.g., Spergel et al. 2003, 2006; Hinshaw et al. 2009; Dunkley
et al. 2009; Komatsu et al. 2009).

Determination of the Hubble parameter requires accurate redshift independent dis-
tances to a large number of galaxies or clusters of galaxies. The Hubble Key Project
(Freedman et al. 2001 and references therein – hereafter HKP) utilized several dozen
galaxies with Cepheid distances to calibrate five secondary distance indicators – Type
Ia SN, Type II SN, the Fundamental Plane (FP), the Surface Brightness Fluctuation
Method (SBF), and the Tully–Fisher Relation (TFR). From these five methods the
HKP found H0 = 72 km s−1 Mpc−1. This value is supported by the recent WMAP
results (Spergel et al. 2003, 2006; Hinshaw et al. 2009; Dunkley et al. 2009; Komatsu
et al. 2009).

While there is general agreement that H0 = ∼ 70 to 74 ± 8 km s−1 Mpc−1, there
have been several recent studies that suggest higher or lower values for the Hubble
parameter. Sandage et al. (2006) find H0 = 62 ± 5 km s−1 Mpc−1. Tully & Pierce
(2000) found H0 = 77±8 km s−1 Mpc−1 from 12 galaxy clusters with the I-band TFR.
The Tully & Pierce (TP00) study predates the final HKP Cepheid distances (Freedman
et al. 2001). Utilizing the HKP Cepheid distances with the 24 zero point calibrators in
the TP00 study results in a downward revision of their I-band zero point from 21.56 to
21.50 with a resulting increase in H0 to 79 km s−1 Mpc−1. This value is closer to the
value the HKP found with the FP (H0 = 82 ± 9 km s−1 Mpc−1) than the final adopted
value of H0 = 72 km s−1 Mpc−1.

Recent work also argues for a shorter distance to the Large Magellanic Cloud (LMC)
than the value adopted by the HKP (Macri et al. 2006; An et al. 2007; Benedict et al.
2007; Grocholski et al. 2007; van Leeuwen et al. 2007; Catelan & Cortes 2008; Feast
et al. 2008). These studies suggest an LMC distance modulus of 18.39±0.05 whereas
the HKP adopted an LMC distance modulus of 18.50±0.10. The newer LMC distance
modulus results in an increase of H0 of ∼ 5%.

In this work, the value of H0 is re-evaluated using the Ks-band TFR and taking
advantage of recent improvements in data available for Tully–Fisher studies. The Two
Micron All Sky Survey (2MASS – Strutskie et al. 2006) has provided near infrared
Ks-band photometry for a much larger sample of galaxies than was available for the
study of TP00. The use of K-band TFR is advantageous because extinction corrections
are significantly smaller in the K-band than in the B-band or I-band. Recently, Springob
et al. (2007) have corrected for systematic differences between rotational velocities
measured from 21 cm emission and rotational velocities measured from optical rotation
curves (Mathewson & Ford 1996) and provided a large database of uniformly corrected
spiral galaxy rotational velocities for Tully–Fisher studies.

Utilizing these data sources and the morphologically type dependent TFR (Russell
2004) strict selection criteria are applied to provide a highly accurate set of distances
to 16 galaxy clusters and over 200 ScI galaxies with distances greater than 40 Mpc.
From the galaxy clusters, the Hubble parameter is found to be H0 = 84.2 ± 6 km s−1

Mpc−1. The ScI galaxy sample gives H0 = 83.4 ± 8 km s−1 Mpc−1.
This paper is organized as follows: section 2 describes the calibration of the mor-

phologically type dependent K-band TFR. Section 3 describes the sample selection for
the determination of Hubble parameter. Section 4 discusses the value of the Hubble
parameter found in this study and considers possible influences on the value of H0. Sec-
tion 5 compares the results of this study with those of the HKP. Section 6 is a discussion
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of implications for cosmology if H0 = 84 km s−1 Mpc−1 and a brief conclusion is
provided in section 7.

2. Calibration, sample selection, and scatter of
the K-band TFR for ScI galaxies

2.1 Calibration of Ks-band TFR

The accuracy of results derived from TFR distance estimates depends critically upon
a large calibration sample for the determination of slope and zero point and strict
selection criteria that eliminate galaxies from the sample which are most likely to have
large TFR errors. The following sections describe the selection criteria utilized in the
calibration of the Ks-TFR for this analysis.

2.1.1 Morphological type effect in the TFR

Russell (2004, 2005a) found evidence that the B-band TFR may be split into two
morphological groups with identical slope but a zero-point offset of 0.57 mag. The first
morphological group (ScI group) includes galaxies classified as ScI, ScI-II, ScII, SbcI,
SbcI-II, SbcII and Seyfert galaxies with spiral morphology. The second morphological
group (Sb/ScIII group) includes Sab/Sb/Sbc/Sc galaxies that do not have ScI group
morphology. ScI group galaxies are more luminous at a given rotational velocity than
Sb/ScIII group galaxies (Russell 2004). Failure to account for this type effect results
in overestimated B-band TFR distances for Sb/ScIII group galaxies, underestimated
B-band TFR distances for ScI group galaxies, and a TFR slope that is too steep. While
the morphological type effect is largest in the B-band, it persists in the I-band and
Ks-band (Giovanelli et al. 1997b; Masters et al. 2008).

For the calibration of Ks-band TFR (hereafter K-TFR) in this analysis, the ScI group
calibrators were restricted to galaxies with Hubble T-types ranging from 3.1 to 6.0 and
with luminosity classes ranging from 1.0 to 3.9 as classified in HyperLeda (Paturel
et al. 2003). The ScI group was calibrated, and then cluster samples were used to
determine the zero point offset for the Sb/ScIII group as discussed in section 2.2. The
ScI group calibrator sample includes 10 galaxies with direct distance determinations
from Cepheid variables (Freedman et al. 2001); 1 galaxy (NGC 2903) with a direct
distance determined from photometry of bright stars (Drozdovsky & Karachentsev
2000); 18 galaxies that are members of groups or companions of galaxies from the SBF
survey of Tonry et al. (2001); and seven galaxies that are companions of galaxies with
Type Ia SN distances from Freedman et al. (2001). As found by Ajhar et al. (2001),
the SBF distance moduli from Tonry et al. (2001) are reduced by 0.06 mag in order to
align them with the final HKP Cepheid distance scale. The calibrator sample is listed
in Tables 1 and 2.

2.1.2 Rotational velocities

The greatest source of uncertainty in TFR distances is found in the measurement
and correction of rotational velocities derived from HI linewidths and optical rotation
curves (Haynes et al. 1999). In addition to uncertainty in raw 21 cm linewidths, cor-
rections must be made for inclination and turbulence. Inclination corrections are larger
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Table 1. Calibrators with direct distance measurements.

Inclination
Galaxy log Vrot ± (◦) Ktc m-M zp Ks

N1365 2.459 0.088 39 6.33 31.27 22.81
N1425 2.254 0.021 62 8.24 31.70 23.02
N2903 2.319 0.012 60 5.96 29.75 22.81
N3198 2.190 0.009 71 7.64 30.70 23.14
N3351 2.267 0.036 44 6.61 30.01 22.85
N4321 2.357 0.079 32 6.56 30.91 23.06
N4414 2.340 0.038 51 6.88 31.24 23.21
N4535 2.285 0.037 45 7.36 30.99 22.93
N4548 2.333 0.040 35 7.08 31.05 22.87
N4725 2.324 0.030 63 6.11 30.46 23.33
N7331 2.431 0.006 65 5.91 30.84 23.03

Table 2. Calibrators with companion SBF or SN Ia distance measurements.

Inclination
Galaxy log Vrot ± (◦) Ktc m-M zp Ks Companion

N3089 2.246 0.019 52 9.24 32.60 22.98 Antlia
N3095 2.313 0.043 55 8.58 32.60 23.09 Antlia
N3223 2.438 0.021 47 7.49 32.60 23.15 Antlia
N3318 2.310 0.034 58 8.86 32.60 22.84 Antlia
N3347 2.338 0.048 69 8.34 32.60 23.13 Antlia
I2560 2.311 0.016 64 8.57 32.60 23.12 Antlia
I2522 2.276 0.043 48 9.22 32.60 22.76 Antlia
N4575 2.224 0.027 51 9.24 32.58 23.14 Cen30
N4603 2.345 0.007 51 8.25 32.58 23.14 Cen30
N1255 2.204 0.038 45 8.33 31.47 23.11 N1201
N3054 2.366 0.017 54 8.25 32.67 23.06 N3078
N5011a 2.192 0.037 57 10.02 33.05 23.10 N5011
N5033 2.365 0.019 63 6.87 31.03 22.80 N5273
N7610 2.176 0.039 52 10.94 33.56 22.82 N7619
I4538 2.208 0.016 39 9.41 32.59 23.11 N5903
E582-12 2.211 0.020 56 9.10 32.26 23.07 N5898
E377-31 2.230 0.015 60 10.17 33.24 22.82 N3557
E287-13 2.249 0.017 78 9.17 32.49 22.92 N7097
E471-49 2.521 0.013 60 9.80 35.39 22.95 E471-27
E471-51 2.322 0.036 53 11.40 35.39 22.99 E471-27
E471-2 2.355 0.012 71 11.13 35.39 22.99 E471-27
E577-1 2.294 0.024 71 11.28 35.05 23.00 E508-67
N4541 2.421 0.019 64 10.01 34.93 23.10 N4493
E444-31 2.338 0.020 50 11.11 35.34 23.10 I4232
A530465 2.207 0.021 67 12.27 35.34 23.01 I4232
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and subject to greater uncertainty as galaxies approach face on orientation. For this rea-
son, calibrator galaxies selected for this analysis were restricted to inclinations >30◦
and ≤80◦. An inclination limit of 80◦ was chosen because luminosity class cannot
be assigned for edge on galaxies and therefore edge on galaxies cannot be accurately
classified as ScI or Sb/ScIII group.

The influence of turbulence corrections is greater at smaller linewidths (Giovanlli
et al. 1997b). It is also now well established that slower rotating galaxies have larger
TFR scatter than faster rotators (Federspiel et al. 1994; Giovanelli 1996; Giovanelli
et al. 1997b; Masters et al. 2006, 2008). For example, Federspiel et al. (1994) found
that TFR scatter decreases from ±0.90 mag for the slowest rotators to only ±0.43 mag
for the fastest rotators. Giovanelli (1996) also found that the fastest rotators had a
scatter about a factor of 2 smaller than the slowest rotators.

In order to avoid the problems associated with the large TFR scatter of the slow-
est rotators, calibrators were also restricted to galaxies with rotational velocities
≥150 km s−1 in the Springob et al. (2007) rotational velocity database.

2.1.3 Ks-band magnitudes and corrections

2MASS total Ks-band magnitudes (Strutskie et al. 2006) were extracted from NED and
corrected for galactic and internal extinction following Tully et al. (1998) and a small
cosmological k-correction was added following Poggianti (1997). The galactic and
internal extinction corrections were made for each galaxy using the B-band extinction
corrections provided in HyperLeda (Paturel et al. 2003). The corrections are as follows:
the galactic B-band extinction (ag in HyperLeda) was multiplied by 0.086 to derive
the extinction in the Ks-band and the internal absorption correction (ai in HyperLeda)
was multiplied by 0.15 to derive the extinction in the Ks-band. Finally, the k-correction
was approximated as −1.52z as per Poggianti (1997). Thus the total corrected Ks-band
magnitudes (Ktc) in this study were derived from uncorrected 2MASS total Ks-band
magnitudes according to the following:

Ktc = Ktot − 0.086ag − 0.15ai − 1.52z. (1)

2.1.4 Slope and zero point of the ScI group Ks-band TFR

Figure 1 is a plot of the absolute Ks-band magnitude (MK) versus the logarithm of the
rotational velocity for the 36 ScI group calibrators listed in Tables 1 and 2. All rotational
velocities used in this study are drawn from the sample of Springob et al. (2007). The
solid line in Fig. 1 is a least squares fit and has a slope of −8.22 ± 0.37. The value
of the slope does not significantly change when determined independently for the
various subsamples from which the calibration distances were drawn. The 11 Table 1
calibrators with direct distance estimates, 18 Table 2 calibrators with SBF distance
estimates, and seven Table 2 calibrators with Type Ia SN distance estimates give slopes
of −7.78, −8.51, and −8.16 respectively.

Using the slope of −8.22 derived from the full sample of calibrators, a mean zero
point of 23.01 ± 0.14 is found for the 36 calibrator galaxies. With the slope of −8.22,
the value of zero point is not affected by the method from which the calibration distance
was determined. The 11 galaxies with direct distance determinations in Table 1, 18
galaxies with SBF distance determinations in Table 2, and seven galaxies with Type
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Figure 1. Calibration of the K-TFR with 36 calibrators from Tables 1 and 2. Solid line is a
slope of −8.22 and error bars represent typical uncertainty in log Vrot and MK.

Ia SN distance determinations in Table 2 give mean zero points of 23.01 ± 0.17,
23.01 ± 0.14, and 23.02 ± 0.06 respectively.

K-TFR distance moduli for ScI group galaxies in this analysis are calculated using
the following equation:

m − MK = Ktc + 8.22(log Vrot − 2.2) + 23.01. (2)

It is important to note that equation (2) should not be viewed as the global K-band
TFR. The sample has a lower rotational velocity limit of 150 km s−1, morphological
restriction to Hubble T-types 3.1 to 6.0, and luminosity class restriction to lumino-
sity classes I, I–II, II, and II–III. Caution should be used in applying the calibration
developed here to galaxies that fall outside these ranges.

2.2 Morphological type dependence in the K-band TFR

Russell (2004) found that ScI group galaxies have a zero point 0.57 mag larger than
Sb/ScIII galaxies. The effect of morphological type dependence is known to be smaller
in the I-band where Giovanelli et al. (1997a) found a 0.32 mag smaller zero point for
Sa/Sab galaxies and 0.10 mag smaller zero point for Sb galaxies relative to Sbc and
later type spirals. It has generally been thought that any type effects should disappear
in the near infrared bands. However, Masters et al. (2008) recently found evidence that
there is a small type effect in the J, H, and K-band Tully–Fisher relations.

The Masters et al. (2008) sample includes a much broader range of morphological
types (e.g., extreme late type and early type spirals) and slower rotators that have been
excluded from this study. In order to test for a morphological type effect in the K-band
we define the Sb group galaxies as all non-Seyfert galaxies of morphological T-types
1.0 to 3.0 and as found by Russell (2004) include in the Sb group later type spirals of
Hubble T-types 3.1–6.0 and luminosity classes ≥4.0 as classified in HyperLeda.

If a type effect similar to that found in the B-band TFR (Russell 2004) exists in the
K-TFR, then Sb galaxies within clusters should have larger mean distances than ScI
group galaxies when Sb group distances are calculated using the ScI group zero point.
To test for this effect, clusters were selected from the template sample of Springob et al.
(2007). The selection criteria adopted for the galaxies within the clusters was consis-
tent with that utilized for the ScI group calibrator sample. Specifically, galaxies were
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Figure 2. Visual inspection of images helps confirm galaxy morphology and inclinations derived
from photometry.

required to have inclinations between 35◦ and 80◦, rotational velocities ≥150 km s−1,
and Hubble T-types from 1.0 to 6.0. Clusters used for estimating the size of the type
effect in the K-band all had at least 12 member galaxies from the Springob et al. (2007)
sample meeting the above criteria and a minimum of four galaxies in both the ScI and
the Sb morphological groups. For the Abell 400 cluster, the sample was also restricted
to galaxies with redshifts ranging from 6500 km s−1 to 8000 km s−1.

At larger distances, fewer galaxies in the HyperLeda database are assigned lumi-
nosity classes. For this reason, before calculating distances the HyperLeda image of
each candidate galaxy meeting all other criteria was visually inspected in order to
determine if the morphology of the galaxy is ScI group morphology or Sb group mor-
phology. For example, NGC 551 (Fig. 2a) in the Pisces supercluster is classified as
SBbc in HyperLeda, but no luminosity class is provided. Visual inspection of the DSS
image in HyperLeda confirms NGC 551 has arm structure of ScI group morphology
and thus is included in the ScI group sample.

Visual inspection also serves as an independent check on the inclination estimates
provided by Springob et al. (2007). For example, Springob et al. (2007) report an
inclination of 51◦ for NGC 2582 in the Cancer cluster. However, visual inspection of
the NGC 2582 image (Fig. 2b) clearly indicates an inclination much closer to face on
orientation than 51◦. UGC 1695 in the Pisces supercluster has an inclination of 76◦
in the Springob et al. (2007) database and thus would meet the selection criteria of
this study. However, visual inspection of the UGC 1695 image (Fig. 2c) reveals an
inclination very close to 90◦ and it is therefore impossible to determine the luminosity
class of this galaxy. Galaxies for which visual inspection of the image indicated an
unambiguous problem with the reported inclination were rejected from the sample.

The Pisces supercluster (Abell 262, NGC 507, and NGC 383 clusters), Abell 400,
Coma, Cancer, Abell 1367, and Hydra clusters had enough galaxies meeting the selec-
tion criteria above to estimate the size of the morphological type effect in the K-band.
Distances to all galaxies not removed from the sample by the selection criteria described
above were calculated for these six clusters using equation (2). The resulting mean dis-
tances to the Sb group and ScI group galaxies in each cluster are provided in Table 3.
It can be seen that for each cluster the mean Sb group distance to the cluster is greater
than the mean ScI group distance to the cluster by +0.06 to +0.40 mag. The mean
difference for the 56 Sb group galaxies in Table 3 is +0.19 ± 0.10 mag. This indicates
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Table 3. Type effect in the K-band TFR.

Cluster N Sb m-M Sb N ScI m-M ScI Sb-ScI

Pisces 13 34.02 17 33.87 +0.15
A400 10 34.84 6 34.58 +0.26
Coma 9 34.65 6 34.59 +0.06
Cancer 9 34.21 6 33.81 +0.40
A1367 11 34.72 4 34.60 +0.12
Hydra 4 33.84 8 33.49 +0.35

that a smaller but still detectable type effect remains in the K-band TFR. All distances
to Sb group galaxies will therefore be calculated using equation (2), but with a zero
point of 22.82 rather than the zero point of 23.01 found for ScI group galaxies.

2.3 Comparison with other K-band TFR studies

One of the largest potential sources of a systematic bias in TFR distances arises when
an incorrect TFR slope is applied to the TFR sample. For this reason it is important
that the TFR derived in this study is only applied to galaxies meeting the selection
criteria utilized to calibrate the type dependent K-band TFR.

Karachentsev et al. (2002), Noordermeer and Verheijen (2007), and Masters et al.
(2008) developed K-band Tully–Fisher relations from 2MASS photometry that are
suitable for comparison with this study. Karachentsev et al. (2002) found a K-TFR
slope of −9.02 ± 0.25 using Hubble distances for 436 galaxies. No corrections for
morphological type dependence are applied and the sample includes galaxies with
rotational velocities as small as 75 km s−1. Noordmeer & Verheijen (2007) found a
K-TFR slope of −8.65 ± 0.19 from a sample of 48 spirals with rotational velocities as
small as 83 km s−1. No corrections for morphological type dependence were applied.
Masters et al. (2008) used a ‘basket of clusters’ technique to create a K-TFR template
with 888 spiral galaxies including galaxies with rotational velocities smaller than
75 km s−1. The Masters et al. (2008) sample provides a global K-TFR corrected for
several types of bias (see section 3 of Masters et al. 2008) with a direct slope of −8.85
for the full sample.

It is interesting to note that these studies utilize different samples and calibration
techniques and yet find consistent slopes in the small range of −8.65 to −9.02 for
the direct K-band TFR. These slopes are slightly steeper than the slope of −8.22
found in this study for a sample restricted to galaxies with ScI group morphology
and with rotational velocities ≥150 km s−1. Masters et al. (2008) also applied all bias
corrections and the direct TFR to 374 ‘High mass’ galaxies in their template sample
with rotational velocities in excess of 160 km s−1 and found a shallower slope of −8.06
which is consistent with the slope found with the 36 calibrators in Tables 1 and 2.
This suggests that the shallower slope found in this study results from the exclusion
of slower rotators from the sample.

The slope for the ScI calibrator sample was also determined using only the 33 ScI
galaxies with rotational velocities ≥160 km s−1 and was found to remain unchanged.
It is reassuring to note that the slope derived from 36 ScI group calibrators is only
slightly steeper than the slope Masters et al. (2008) found from 374 comparable



The Ks-band Tully–Fisher Relation 101

galaxies after applying their complete set of bias corrections. The slope found in this
study is unbiased as long as it is applied to galaxies meeting the selection criteria uti-
lized in compiling the calibrator sample. Inclusion of slower rotating galaxies would
require a steeper slope.

Masters et al. (2008) also calibrated the K-TFR using a bivariate fit and found an
even steeper slope of −10.02 for their complete sample of 888 galaxies. In order to
test for the possible influence of the slope on the results of this study the zero point was
calculated for the 36 ScI group calibrators using a slope of −10.02. The resulting zero
point is reduced from 23.01 ± 0.14 to 22.84 ± 0.20 with the steeper slope. Keeping a
0.19 mag type effect, Sb group galaxy distances will be calculated using a zero point
of 22.65 when the slope of −10.02 is utilized.

In this analysis, the Hubble parameter will be derived from the slope and zero points
found in sections 2.1.4 and 2.2. However, as a test of the effect of the K-TFR slope on
the Hubble parameter, the distances to galaxies in the cluster sample (section 3.1) will
also be calculated using the slope of −10.02 and the zero points of 22.84 and 22.65
for the ScI and Sb group respectively (section 4.2).

2.4 Scatter in the type dependent K-band TFR

The subject of scatter in the TFR has been widely studied (Bernstein et al. 1994;
Willick 1996; Raychaudhury et al. 1997; Giovanelli et al. 1997b; Tully & Pierce 2000;
Sakai et al. 2000; Kannappan et al. 2002; Russell 2005b; Masters et al. 2008). For
the purpose of this study, it is important to note that the scatter observed with this
sample is only applicable to the selection criteria utilized in creating the Tully–Fisher
relations discussed in sections 2.1 and 2.2. Larger intrinsic scatter will occur with a
less restrictive set of sample selection criteria. The RMS scatter for the 36 ScI group
calibrators in Tables 1 and 2 is ±0.14 mag relative to the calibration distance moduli.

Most 2MASS Ks-band magnitudes for galaxies in the sample have an uncertainty
of only ±0.03 to ±0.10 mag. However, Noordermeer & Verheijen (2007) point to
reasons for suspecting that the 2MASS uncertainty estimates are overly optimistic and
suggest a more realistic estimate of ±0.11 mag for the typical K-band uncertainty –
which is adopted for this study. The mean uncertainty of logarithm of the rotational
velocities (Springob et al. 2007) used for the 36 calibrators is ±0.030. Thus the greatest
source of uncertainty in the K-band TFR distances should be expected to arise from
the effect of inclination uncertainty on the correction of the rotational velocity to edge
on orientation. Since visual inspection of images eliminated galaxies with grossly
inaccurate or uncertain inclinations (section 2.2), the galaxies in the final sample have
inclinations that should be accurate to 5◦ or better.

With a slope of −8.22 the typical distance modulus uncertainty is ±0.247 mag from
the uncertainty in the rotational velocities as reported by Springob et al. (2007). This
may be added in quadrature with a Ks-band magnitude uncertainty of ±0.11 mag to
yield a total expected distance modulus uncertainty of ±0.27 mag. The RMS scatter
of the ScI group calibrator zero point is only ±0.14 mag which is significantly smaller
than the scatter expected from the rotational velocities. This may be an indication that
the uncertainty in the rotational velocities is overestimated by Springob et al. (2007)
The mean uncertainty Springob et al. (2007) reported for the rotational velocities is of
the magnitude expected for a ±6◦ inclination uncertainty. The small observed scatter
suggests that inclinations are actually accurate to ∼ ±3◦ in most cases. In any case, the
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small observed scatter in the K-TFR zero point indicates that there is negligible intrinsic
scatter in the K-TFR for galaxies meeting the selection criteria adopted in this study.

3. Samples for determination of the Hubble parameter

3.1 Springob et al. (2007) galaxy cluster sample

Table 4 lists the 10 clusters from the template sample of Springob et al. (2007) that
had at least five galaxies meeting the selection criteria utilized to define the calibration
samples as discussed in sections 2.1 and 2.2. Column 1 is the cluster. Column 2 is
the number of cluster members in the full Springob et al. (2007) sample. Columns 3,
4, and 5 are the number of galaxies within each cluster rejected for not meeting the
rotational velocity, inclination, and Hubble T-type criteria respectively. Column 6 is the
number of galaxies rejected for having K-TFR distances that fall outside the primary
distribution of K-TFR distances for the cluster. Column 7 provides notes on several
rejections specific to individual clusters or galaxies. Column 8 is the final sample of
accepted galaxies for each cluster. In order to reduce the effect of motions within the
local velocity field and cluster depth effects, the cluster sample was also restricted to
those clusters with a minimum distance of 40.0 Mpc.

In addition to the criteria discussed in section 2, galaxies were restricted to the
redshift range of 6500–8000 km s−1 for the Abell 400 cluster and 8000–10000 km s−1

for the Abell 2197/99 cluster. Six of the 10 clusters had member galaxies meeting
all other criteria rejected based upon the distance distribution of the cluster members
(column 6 of Table 4). With the exception of UGC 8229 in the Coma cluster which
has a K-TFR distance modulus 2.3σ less than the Coma cluster mean, all galaxies
rejected as being outside the primary cluster distance distribution were at least ±2.5σ

from the mean of the accepted galaxies.
The largest sample of galaxies from the Springob et al. (2007) template sample is

found in the Pisces supercluster which is comprised of galaxies in the Abell 262, NGC
507, and NGC 383 clusters. The selection criteria utilized in this study are illustrated
using this sample of 95 galaxies (Table 4). As indicated in Table 4, 23 galaxies from the

Table 4. Cluster template sample rejection reasons.

Distance Final
Cluster N log Vrot i t distribution Other sample

Pisces 95 39 19 7 7 23
A400 50 13 7 2 4 3 declination rejected

9 redshift range rejected
12

Cancer 49 20 13 1 5 10
Coma 43 14 9 5 4 11
A1367 33 6 6 6 3 12
Hydra 31 9 9 0 2 1 uncertain 2MASS Ks 10
A3574 29 12 8 0 0 1 no Ks; 1 R.A. rejected 7
A2197/99 22 1 8 0 0 4 redshift range rejected 9
A2634 22 9 3 2 0 8
A779 17 7 2 4 0 5
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Table 5. Pisces supercluster galaxies rejected for distance
distribution.

Galaxy m-M K-TFR Vcmb �m-M Mpc

NGC 688 34.36 3894 +0.59 74.5
UGC 1744 34.67 4578 +0.90 85.9
U1416 35.08 5222 +1.31 103.8
U1257 34.59 4404 +0.82 82.8
U724 34.63 4880 +0.86 84.3
U1493 33.05 3895 −0.72 40.8
U1672 32.96 4367 −0.81 39.1

Pisces supercluster met all selection criteria applied. These 23 galaxies have a mean
distance modulus of 33.77 ± 0.21 and all have distance moduli within the range 33.35
to 34.19.

Note that 39 of the 95 galaxies in the Pisces supercluster template sample had
rotational velocities less than 150 km s−1. For 27 of these galaxies it was possible
to calculate K-TFR distances. The 27 slow rotators had a mean distance modulus of
34.06 with a substantially larger RMS scatter of ±0.87 mag when compared with the
23 accepted galaxies. In fact only eight of the 27 slow rotators have K-TFR distance
moduli that fall within the distance modulus range of the 23 accepted galaxies. This
situation does not improve if the slope of −10.02 is adopted as the mean distance for
the slow rotators is then decreased to 33.57 ± 0.90. The significantly larger scatter
found for the slow rotators justifies the exclusion of slower rotators from the sample
and is consistent with the findings of Federspiel et al. (1994) who found a scatter
of ±0.90 mag for slow rotators but only ±0.40 mag for faster rotators. It was also
suggested by Giovanelli (1996) that the safest means of obtaining the tightest possible
TFR is to exclude lower luminosity galaxies.

The Pisces supercluster sample had seven galaxies (listed in Table 5) rejected for
a distance modulus that deviated from the mean of the accepted galaxies by ±2.5σ

or greater. Accepting these seven galaxies would slightly increase the mean distance
modulus to 33.86 but significantly increase the observed RMS scatter about the mean to
±0.45 mag. The accepted galaxies have K-TFR distances ranging from 47 to 69 Mpc.
It seems prudent then to reject from the Pisces supercluster sample a galaxy such as
UGC 1416 which has a K-TFR distance of 104 Mpc and therefore potentially a large
error in the K-TFR distance. In fact, UGC 1416 may be a genuine background galaxy
as the 2MASS total K-band angular diameter of UGC 1416 (rotational velocity =
209 km s−1) is only 1.00′ whereas the accepted Pisces supercluster galaxy UGC 1676
(Vrot = 214 km s−1) has a K-band angular diameter of 2.19′. However, whether UGC
1416 is a genuine background galaxy or a galaxy with an extremely large K-TFR
distance error, it would be inappropriate to use UGC 1416 in calculating the mean
distance to the Pisces supercluster as it is clearly not representative of the normal
distance distribution of cluster members.

The 10 Springob et al. (2007) template clusters were supplemented with six addi-
tional clusters or groups from the non-template sample of Springob et al. (2007) which
had at least five galaxies meeting the selection criteria of this study. The value of the
Hubble parameter derived from these 16 clusters is discussed in section 4.
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3.2 ScI galaxies from the Mathewson & Ford sample

Mathewson & Ford (1996 – MF96) provided a catalog of 2447 galaxies – most
with rotational velocities derived from optical rotation curves. Springob et al. (2007)
corrected the rotational velocities from MF96 to standardize them with rotational
velocities derived from hydrogen linewidths and have included the MF96 sample in
their non-template catalog. The MF96 catalog was searched for all ScI group galax-
ies meeting the rotational velocity, inclination, and morphology selection criteria of
this study. This yielded 140 galaxies with ScI group morphology as classified in
HyperLeda and distances of at least 40.0 Mpc but not greater than 140.0 Mpc.

The image of each galaxy from the MF96 sample with Hubble T-types from 3.1–6.0,
but for which the luminosity class was not provided was visually inspected. An addi-
tional 78 ScI group galaxies were identified by examining arm structure in the images
bringing the total sample to 218 ScI group galaxies with distances in the 40.0 Mpc to
140.0 Mpc range. Note that these 78 galaxies were identified visually before determin-
ing the K-TFR distance and therefore the decision of whether or not to include these
galaxies in the sample was not influenced by prior knowledge of the distance to each
galaxy.

In the process of identifying the 218 ScI group galaxies, 12 galaxies were identified
for which there was a 15◦ or greater discrepancy between the HyperLeda and the
MF96 inclination, or for which the inclination provided in MF96 was highly uncertain.
In some cases the inclination uncertainty results from unusual elongated arm structure
that produces an inclination closer to edge on orientation than visual inspection of
the image indicates. For example, ESO 384-9 has a 59◦ inclination in Springob et al.
(2007) but the visual appearance suggests an inclination closer to 40◦ with arms that
are significantly elongated. Visual inspection of the 218 accepted ScI group galaxies
confirmed that the Springob et al. (2007) inclinations for the accepted galaxies are
reasonable.

For these 218 ScI galaxies, rotational velocities were taken from Springob et al.
(2007) and 2MASS Ks-band magnitudes were corrected as discussed in section 2.1.3.
The value of the Hubble parameter derived from the 218 ScI galaxies is discussed in
the next section.

4. The Hubble parameter

4.1 The value of the Hubble parameter from 16 galaxy
clusters and 218 ScI galaxies

Table 6 lists the mean distances, redshifts and the value of the Hubble parameter indi-
cated for each of the 16 galaxy clusters discussed in section 3.1. The mean RMS scatter
of the distance moduli of cluster members around the cluster mean is ±0.26 mag. Note
that the intrinsic K-TFR scatter must be smaller than this because of an expected con-
tribution to the observed scatter from cluster depth effects. The 10 template clusters
give an unweighted mean for the Hubble parameter of 85.1 ± 5 km s−1 Mpc−1. The
weighted mean is 85.0±5 km s−1 Mpc−1. The individual template clusters give values
of the Hubble parameter within the remarkably small range from H0 = 82.9 km s−1

Mpc−1 to H0 = 86.9 km s−1 Mpc−1. The six non-template clusters generally have
smaller numbers of accepted cluster members and have a larger range in H0 values
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Table 6. Cluster Hubble parameter.

Cluster N m-M ± Mpc Vcmb H0 ±
Template

Pisces 23 33.77 0.21 56.8 4794 84.4 7.7
A1367 12 34.49 0.22 79.1 6559 82.9 7.9
A400 12 34.60 0.18 83.2 7227 86.9 7.0
Coma 11 34.70 0.26 87.1 7563 86.8 9.8
Cancer 10 33.61 0.34 52.7 4523 85.8 12.5
Hydra 10 33.43 0.19 48.4 4080 84.3 7.0
A2197/99 9 35.26 0.21 112.7 9479 84.1 7.8
A2634 8 35.00 0.22 100.0 8689 86.9 8.4
A3574 7 33.80 0.29 57.6 4903 85.1 10.6
A779 5 34.76 0.43 89.5 7532 84.2 15.2

Non-Template
A548 8 35.64 0.43 134.3 12062 89.8 16.1
A114 7 36.52 0.26 201.4 17810 88.4 9.9
A1736 7 35.57 0.22 130.0 11585 89.1 8.6
A3716 7 35.94 0.28 154.2 14382 93.3 11.3
ESO 596 6 34.85 0.23 93.3 7043 75.5 7.6
ESO 471 5 35.40 0.21 120.2 8429 70.1 6.4

Figure 3. Hubble plot for 16 galaxy clusters in Table 6. Filled triangles are template clusters
and open circles are non-template clusters. Solid line represents H0 = 84.

(H0 = 70.1 to 93.3). The unweighted mean for the full sample of 16 clusters is
H0 = 84.9±5 km s−1 Mpc−1 and the weighted mean is H0 = 84.2±5 km s−1 Mpc−1.
The redshift velocity–distance relation for the 16 clusters is shown in Fig. 3.

Table 7 lists the mean values of H0 grouped into five distance bins for the 218 ScI
galaxies discussed in section 3.2. The mean value of H0 for the 218 ScI galaxies is
83.4 ± 8 km s−1 Mpc−1 which is very close to the weighted mean value found for
the 16 clusters in Table 6. The two samples therefore indicate a Hubble parameter of
84 ± 6 km s−1 Mpc−1 using the morphologically type dependent K-TFR.

It is important to note that if Malmquist bias significantly affects the sample, then
the value of the Hubble parameter is expected to increase significantly with distance
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Table 7. MF96 ScI Hubble parameter.

Distance range N log Vrot H0

40–59.9 52 2.306 82.9
60.0–79.9 63 2.298 83.3
80.0–99.9 52 2.326 86.5
100.0–119.9 28 2.336 82.1
120.0–139.9 23 2.368 79.5
Total 218 83.4

(Bottinelli et al. 1986, 1988; Federspiel et al. 1994). The effects of Malmquist bias are
not observed in Table 7 as there is very little variation in H0 from one distance bin to
the next. It is also worth noting that the two most distant distance bins have the lowest
mean H0 values and thus run counter to what is expected when there is a significant
Malmquist bias. Lack of a signature from Malmquist bias is not surprising given that
the observed scatter of the K-TFR in this study is very small and that Masters et al.
(2008) concluded that the effects of Malmquist bias are negligible in a sample that
included many, much slower rotators theoretically more susceptible to introducing
Malmquist bias effects than the fast rotators used in this study.

4.2 Effect of the slope of K-TFR

It is worth investigating whether or not the results would change if a steeper slope is
adopted for the K-TFR. As discussed in section 2.3, while Masters et al. (2008) find
a slope for fast rotators consistent with that found from the 36 calibrators in Tables 1
and 2, they found a slope of −10.02 for the K-TFR from a bivariate fit that includes
slower rotators. Using this global K-TFR slope of −10.02 and the mean zero points for
ScI group and Sb group galaxies calculated in section 2.3, distances to all 16 clusters
were recalculated (Table 8). The unweighted mean values for the Hubble parameter
are 83.9 ± 7 km s−1 Mpc−1 for the 10 template clusters and 83.7 ± 7 km s−1 Mpc−1

for the full sample of 16 clusters. Therefore the value of the Hubble parameter derived
in this study is not significantly affected by the adopted K-TFR slope.

It is important to note that the steeper slope produces mean distances to individual
cluster members that are rotational velocity dependent. For example in the A400 cluster
the six fastest and six slowest rotators have mean distance moduli of 34.84 ± 0.16 and
34.55 ± 0.27, respectively, with a slope of −10.02. With the slope of −8.22 the mean
distance moduli of the fastest and slowest rotators are 34.65 ± 0.15 and 34.55 ± 0.21,
respectively, suggesting that the shallower slope used in this study is more appropriate
for a sample restricted to faster rotators. The discrepancy between fast and slow rotators
is smaller than A400 for the Pisces supercluster (+0.12 mag) but even larger than A400
for the Coma cluster (+0.45 mag).

4.3 Effect of inclinations

In order to test the possible effects of galaxy inclinations on the derived value of H0,
the 218 ScI galaxies were grouped into four inclination bins (Table 9). It can be seen
in Table 9 that the inclination bins from 50◦–69◦ give a mean Hubble parameter of
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Table 8. Cluster Hubble parameter
with K-TFR slope of −10.02.

Cluster m-M K-TFR H0

Pisces 33.81 82.9
A1367 34.47 83.8
A400 34.69 83.4
Coma 34.77 84.0
Cancer 33.61 85.8
Hydra 33.35 87.2
A2197/99 35.33 81.4
A2634 35.08 83.7
A3574 33.80 85.1
A779 34.82 81.8
A548 35.65 89.4
A114 36.53 88.1
A1736 35.47 93.3
A3716 36.05 88.7
ESO 596 34.82 76.5
ESO 471 35.59 64.2

Table 9. Hubble parameter for 218 ScI
galaxies group by inclination bins.

Inclination
range (◦) N H0

35–49 38 79.7
50–59 75 84.3
60–69 70 84.3
70–80 35 83.1
Total 218 83.4

84.3 km s−1 Mpc−1, consistent with the weighted mean value found for the 16 galaxy
clusters. The galaxies with inclinations from 50◦–69◦ are especially important because
they comprise two-third of the ScI sample and are least susceptible to the problems
associated with low or high inclinations. The galaxies with inclinations from 35◦–49◦
give H0 = 79.7 km s−1 Mpc−1 which is mildly discrepant when compared with the
other inclination bins. This discrepancy is not unexpected as uncertainty in corrected
rotational velocities increases for galaxies closer to face on orientation.

4.4 Effect of visual inspection of images

As described in section 2, images of candidate galaxies for this sample were visually
inspected to verify inclination estimates from axial ratios and morphological lumi-
nosity classification. For the cluster sample, galaxies not assigned a luminosity class
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Figure 4. Examples of galaxies from the Mathewson & Ford (1996) sample that were identified
as ScI galaxies from visual inspection of images for this study.

in HyperLeda were in some cases found to have ScI group morphology (Fig. 2a) and
therefore had distances calculated with the ScI group zero point rather than the Sb
group zero point. Thus within the clusters, the effect of visual inspection of images
leads to a slight increase in clusters distances if galaxies were incorrectly judged to
have ScI group morphology.

For the ScI sample 140 of the 218 galaxies were classified as ScI group galaxies
in HyperLeda. The remaining 78 galaxies were classified as ScI group galaxies from
visual inspection of images. A sample of these galaxies is provided in Fig. 4 to illustrate
the identification of ScI morphology. Not surprisingly, 61 of these 78 additions were at
distances beyond 80.0 Mpc. The 78 added galaxies seem to have the effect of slightly
increasing the overall value of H0. The value of H0 for the 140 galaxies classified as
ScI group in HyperLeda is 82.2 ± 8 km s−1 Mpc−1 whereas the 78 galaxies added
from visual inspection give H0 = 85.7 ± 8 km s−1 Mpc−1.

However, both subsets are very close to the weighted mean H0 value found from
the 16 clusters (H0 = 84.2 km s−1 Mpc−1) and therefore support the higher value of
H0 found in this study. It is also important to recognize that the galaxies added to the
ScI sample from visual inspection of images would have even closer distances if the
Sb zero point was utilized and therefore would give an even larger value for H0.

4.5 Effect of distance distribution rejection for clusters

Table 10 lists the distances to the 16 clusters when the galaxies rejected as having
anomalous K-TFR distances relative to the cluster mean are included. The unweighted
mean H0 value then is 84.5 ± 5 km s−1 Mpc−1 which may be compared with an
unweighted mean H0 value of 84.9 ± 5 km s−1 Mpc−1 found when 25 galaxies are
rejected from the clusters due to large discrepancies in their distances relative to the
accepted galaxies. The rejection of individual galaxies within the clusters based upon
the distance distribution of the cluster members therefore has a negligible effect on the
value of H0.

4.6 The large Magellanic cloud distance modulus

In section 4.1, a Hubble parameter of 84 km s−1 Mpc−1 was found. The zero point
calibration for the K-TFR assumes a distance modulus to the LMC of 18.50 ± 0.10 as
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Table 10. Clusters with distance distribution rejected galaxies included.

Cluster N m-M Mpc Vcmb H0

Template
Pisces 30 33.86 59.1 4716 79.8
A1367 15 34.55 81.3 6618 81.4
A400 16 34.62 83.9 7291 87.3
Coma 15 34.51 79.8 7402 92.8
Cancer 12 33.79 57.3 4534 79.1
Hydra 12 33.54 51.1 4144 81.1
A2197/99 9 35.26 112.7 9479 84.1
A2634 8 35.00 100.0 8689 86.9
A3574 7 33.80 57.6 4903 85.1
A779 5 34.76 89.5 7532 84.2

Non-template
A548 8 35.64 134.3 12062 89.8
A114 7 36.52 201.4 17810 88.4
A1736 7 35.57 130.0 11585 89.1
A3716 7 35.94 154.2 14382 93.3
ESO 596 6 34.85 93.3 7043 75.5
ESO 471 5 35.40 120.2 8429 70.1

Table 11. LMC distance modulus.

Study m-M LMC ±
Macri et al. (2006) 18.41 0.10
Benedict et al. (2007) 18.40 0.05
van Leeuwen et al. (2007) 18.39 0.05
Grocholski et al. (2007) 18.40 0.04
An et al. (2007) 18.34 0.06
Catelan & Cortes (2008) 18.44 0.11
Feast et al. (2008) 18.37 0.09

adopted by the HKP (Freedman et al. 2001). However, recent studies suggest the LMC
distance modulus is closer to 18.39 ± 0.05 (Table 11). Macri et al. (2006) demon-
strated an important metallicity effect in the Cepheid P–L relation and concluded
that LMC distance modulus is 18.41 ± 0.10. A number of subsequent studies have
adopted metallicity corrections for the Cepheid P–L relation. Benedict et al. (2007)
provided new trigonometric parallaxes to Galactic Cepheids and found a distance
modulus of 18.50 ± 0.03 without metallicity corrections but 18.40 ± 0.05 when
applying the metallicity correction of Macri et al. (2006). van Leeuwen et al. (2007)
used revised Hipparcos parallaxes and found the distance modulus to the LMC is
18.52 ± 0.03 without metallicity corrections or 18.39 ± 0.05 with metallicity cor-
rections. An et al. (2007) constructed the Cepheid P–L relation from seven galactic
clusters with Cepheids and found a distance to the LMC of 18.48 without metallicity
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corrections and 18.34 ± 0.06 with metallicity corrections. Fouque et al. (2007) did
not study the effects of metallicity on the P–L relation but concluded that the LMC
distance modulus must be smaller than 18.50 after correcting for metallicity effects.

Using Type II Cepheid’s and RR Lyrae variables, Feast et al. (2008) find an LMC
distance modulus of 18.37±0.09. Catelan and Cortes (2008) provide a revised trigono-
metric parallax to RR Lyrae and derive an LMC distance modulus of 18.44 ± 0.11.
From the K-band luminosity of the red clump in 17 LMC clusters, Grocholski et al.
(2007) find the LMC distance modulus to be 18.40 ± 0.04.

It is clearly seen from these results that the latest studies indicate that the best value
for LMC distance modulus is ∼0.10 mag smaller than the value adopted by the HKP
when the required metallicity corrections are applied to the Cepheid P–L relation.
The recent studies listed in Table 11 give an unweighted mean for the LMC distance
modulus of 18.39 ± 0.05 and require a downward revision of −0.11 mag for the zero
points of the K-TFR calibrators in Tables 1 and 2. Applying this correction to the
K-TFR distances of this study increases the derived value of the Hubble parameter
from the Type Dependent K-TFR to 88 ± 6 km s−1 Mpc−1.

5. Comparison with the results of the Hubble key project

Since the value of the Hubble parameter found in this analysis is significantly higher
than the value found by Freedman et al. (2001) from the I-TFR, SBF, FP, Type Ia SN,
and Type II SN methods, the HKP results are reconsidered in the following sections.
It is important to note that the HKP reported a Hubble parameter of 82 ± 9 from
11 clusters with fundamental plane distances – consistent with the result found in this
study from 16 clusters and 218 ScI galaxies using the morphologically type dependent
K-TFR. The remaining four methods used by the HKP give H0 =∼ 71.

5.1 The HKP I-TFR

The HKP I-band TFR was calibrated by Sakai et al. (2000). Final adjustments to cluster
distances were presented in Freedman et al. (2001) in order to account for the final
Cepheid calibrator distances. From the I-TFR the HKP found H0 = 71 ± 7 km s−1

Mpc−1, significantly smaller than the value found in this study. Table 12 compares the
distances to the eight clusters in common with this study and Freedman et al. (2001).

Table 12. Comparison with HKP I-TFR distances.

Cluster m-M K-TFR m-M HKP I-TFR I-TFR – K-TFR

Pisces 33.77 34.01 +0.24
A1367 34.49 34.75 +0.26
A400 34.60 34.73 +0.13
Coma 34.70 34.66 −0.04
Cancer 33.61 34.35 +0.74
Hydra 33.43 33.83 +0.40
A3574 33.80 33.97 +0.17
A2634 35.00 35.30 +0.30
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Figure 5. K-TFR plot for ScI galaxies in the cluster sample at the I-TFR distances reported by
Freedman et al. (2001). Filled circles are the 36 calibrators from Tables 1 and 2 and solid line is a
slope of −8.22. Open circles are the ScI’s in the cluster sample at the I-TFR distances of the HKP.

In every cluster except Coma, the HKP cluster distances are larger than the K-TFR
distances found in this study with a mean distance modulus difference of +0.28 mag.

Figure 5 is a plot of the absolute magnitude (MK) versus the logarithm of the
rotational velocity (log Vrot) for the ScI group galaxies in the cluster sample (open
circles) of this study at the I-TFR cluster distances determined by the HKP. Also plotted
in Fig. 5 are the 36 ScI group calibrators from this study (filled circles). It is clearly
seen in Fig. 5 that the cluster galaxies would be systematically over-luminous relative
to the calibrators if they were at the I-TFR distances found by the HKP.

There is independent evidence that the problem is not the K-TFR distances to the
clusters found in this study, but rather the I-TFR distances found by the HKP. For
example, the HKP found an I-TFR distance to Cen30 of 43.2 Mpc. However, a Cepheid
distance to the Cen30 galaxy NGC 4603 was determined by Newman et al. (1999) and
the galaxy was found to be at 33.3 Mpc–10 Mpc closer than the HKP I-TFR. Tonry
et al. (2001) found a distance to the Centaurus cluster of 32.8 Mpc from nine early
type galaxies with SBF distances – a value in excellent agreement with the NGC 4603
Cepheid distance.

The HKP I-TFR distance to the Antlia cluster is 45.1 Mpc. Four galaxies in the
Antlia cluster with SBF distances in Tonry et al. (2001) give a distance of 33.1 Mpc.
Recently Bassino et al. (2008) determined the distances to the giant ellipticals NGC
3258 and 3268 in Antlia from the globular cluster luminosity function (GCLF). The
mean distance of the two giant ellipticals is 33.4 Mpc – in excellent agreement with
the SBF distances. It should also be noted that seven galaxies from the Antlia cluster
were included in the calibration sample for the K-TFR of ScI galaxies using the Tonry
et al. (2001) SBF distances to Antlia (Table 2). The mean zero point of these seven
galaxies is in exact agreement (23.01 ± 0.16) with the overall mean found from the
full sample of 36 ScI calibrators. In order for the HKP I-TFR distance to Antlia to be
correct, the K-TFR zero point would need to be increased by 0.67 mag, which is 4.8σ

larger than the observed scatter in the K-TFR zero point.
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The explanation for the discrepancy in the HKP project I-TFR distances is beyond
the scope of this paper. However, the above evidence strongly argues for a problem
with the HKP I-TFR distances rather than the K-TFR distances found in this study.

5.2 HKP SBF distances

The HKP found H0 = 70±6 km s−1 Mpc−1 from six galaxies with surface brightness
fluctuation distances. For each of these galaxies it is possible to compare the HKP
SBF distance with cluster or group FP, SBF, or K-TFR distance estimates from this or
other studies.

NGC 4881 is a member of the Coma cluster and for this galaxy the HKP finds an
SBF distance of 102.3 Mpc. The HKP FP distance to Coma is 85.8 Mpc and the K-TFR
distance is 87.1 Mpc. The SBF distance modulus to NGC 4881 is therefore +0.35 mag
larger than that is found from other methods. Considering that the FP distance is derived
from 81 galaxies and the K-TFR distance is derived from 11 galaxies, it would be
reasonable to conclude that NGC 4881 is simply on the backside of the Coma cluster
and not representative of the mean Coma cluster distance. In addition, Ferrarese et al.
(2000) note that there is a large uncertainty in the NGC 4881 SBF distance because
the galaxy was not observed in the V band.

NGC 4373 (ESO 322-6) is a member of the Cen30 cluster and the HKP found an
SBF distance of 36.3 Mpc for this galaxy. This distance is in exact agreement with
NGC 4373’s nearby companion ESO 322-8 for which Tonry et al. (2001) find an SBF
distance of 36.3 Mpc.

NGC 708 is a member of the Abell 262 cluster and the HKP reports an SBF distance
of 68.2 Mpc. The K-TFR distance to A262 is 56.5 Mpc from 10 galaxies in A262
meeting the ScI or Sb/ScIII group selection criteria of this study. The NGC 708 SBF
distance modulus is 0.41 mag larger than the K-TFR distance modulus.

NGC 5193 is listed as a member of the Abell 3560 cluster in Ferrarese et al. (2000).
However, Abell 3560 is actually a background cluster with cz = ∼15,000 km s−1.
NGC 5193 is coincident with coordinate distribution of the Abell 3574 cluster sample
of Springob et al. (2007). The HKP reports an SBF distance of 51.5 Mpc for NGC
5193 in excellent agreement with the HKP FP distance to A3574 of 51.6 Mpc. The
K-TFR distance to Abell 3574 is 57.6 Mpc – somewhat larger than the SBF and FP
distance. Corrected to the cosmic microwave background reference frame the redshift
of NGC 5193 is 3991 km s−1 which is consistent with the lower redshift members of
Abell 3574.

IC4296 is also coincident with the Abell 3574 cluster and has an SBF distance of
55.5 Mpc – very close to the value found with the K-TFR and consistent with the HKP
FP distance.

NGC 7014 has an SBF distance of 67.3 Mpc. The ScI galaxy ESO 286-79 is the
closest neighbor to NGC 7014 for which a K-TFR distance can be calculated. Using
the rotational velocity provided by MF96 (log Vrot = 2.468) and a corrected 2MASS
K-band magnitude of 8.71, the K-TFR distance to ESO 286-79 is 60.8 Mpc. The NGC
7014 SBF distance modulus is larger by +0.22 mag.

The HKP SBF estimate for H0 is based upon only six galaxies in six clusters. There
is a certain amount of risk in determining the distance to a cluster from a single galaxy
as the selected galaxy may be on the front or backside of the cluster. It is therefore
reasonable to conclude that the value of H0 found in this study with the K-TFR using
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a sample of 16 galaxy clusters with a minimum of five cluster members and a sample
of 218 ScI galaxies provides a more reliable sampling of the Hubble flow than a value
derived from six SBF distances.

However, it is interesting to note that the three nearest galaxies in the HKP SBF
sample (NGC 4373, IC 4296 and NGC 5193) have distances in excellent agreement
with Tonry et al. (2001) SBF, HKP FP, and K-TFR distances from this study. The
three most distant SBF galaxies have distance moduli, a mean +0.33 mag larger than
the distance moduli, found from the other methods. This may indicate a systematic
problem with the application of the SBF method at distances beyond ∼ 60 Mpc, but a
larger number of SBF distances will be needed in order to test that possibility in any
meaningful way.

5.3 Type II and Type Ia SN

The HKP found H0 = 72 ± 9 km s−1 Mpc−1 from four Type II SN. Four galaxies is
too small a sample to draw meaningful conclusions about the value of H0. In addition,
only three galaxies with Cepheid distances were available for fixing the zero point of
the Type II SN distance scale (Table 11 of Freedman et al. 2001). Given these problems
with sample size, the HKP Type II SN result is not considered here.

The HKP found H0 = 71 ± 6 km s−1 Mpc−1 from 36 Type Ia SN. In compiling the
K-TFR calibrator sample for this study seven ScI galaxies were identified as nearby
companions to four of the Type Ia SN. For the remaining 32 Type Ia SN, companion
ScI galaxies for which K-TFR distances could be calculated were not found. The
seven ScI’s with calibration distances defined by the Type Ia SN are shown as open
diamonds against the remaining 29 calibrators (filled circles) in Fig. 6. Note that the
seven galaxies with Type Ia SN distances fall tightly on the mean relation defined by
the other 29 galaxies (solid line).

Figure 6. Comparison of seven ScI calibrators (open diamonds) that are companions of galaxies
with Type Ia SN distances compared with the remaining 29 ScI calibrators (filled circles). Solid
line has a slope of −8.22.
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It should also be recalled from section 2.1 that the slope defined by the seven ScI’s
with SN calibration distances is −8.16 which is in excellent agreement with the slope
defined by the full sample of 36 calibrators. In addition, the mean zero point of these
seven galaxies is 23.01 ± 0.06 – in exact agreement with the overall mean.

While the comparison sample is an uncomfortably small sample of only four Type
Ia SN distances, the comparison suggests that there is excellent agreement between
the Type Ia SN distances and the K-TFR distances of this study. The comparison can
only be improved when greater numbers of Type Ia SN distances become available in
the local universe.

5.4 Can the Hubble parameter be 70 km s−1 Mpc−1?

Supported by the results of the HKP (Freedman et al. 2001) and WMAP (Spergel
et al. 2003, 2006; Hinshaw et al. 2009; Dunkley et al. 2009) it is generally accepted
that the value of H0 is ∼ 70 km s−1 Mpc−1. Sandage et al. (2006) find an even smaller
value for H0 of 62 ± 5 km s−1 Mpc−1. In this study, the value of H0 was found to be
H0 = 84±6 km s−1 Mpc−1 when adopting the HKP zero point for the LMC. Adopting
an LMC distance modulus of 18.39 indicated from recent studies (section 4.6) increases
H0 to 88 ± 6 km s−1 Mpc−1. The values found in this study are significantly larger
than those found in other studies.

Figure 7 is a plot of the K-band absolute magnitudes versus the logarithm of the
rotational velocity for the 36 calibrators in Tables 1 and 2 and the ScI galaxies in the
16 clusters. The K-band absolute magnitudes for the calibrators are calculated for an
LMC distance modulus of 18.39 whereas absolute magnitudes of the cluster galaxies
are derived assuming the mean cluster distances for H0 = 70 km s−1 Mpc−1. A Hubble
parameter of 70 km s−1 Mpc−1 is adopted as a reasonable average of the H0 values the

Figure 7. K-TFR plot for ScI galaxies in the 16 clusters (Table 6) at redshift distances using
H0 = 70 km s−1 Mpc−1. Open circles are cluster ScI’s at Hubble distances and dashed line is a
least squares fit. Filled circles are the 36 calibrators from Tables 1 and 2 with an LMC distance
modulus of 18.39 and solid line is a least squares fit. The ScI’s are systematically more luminous
than the calibrators at the H0 = 70 distances.
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HKP and Sandage et al. (2006) teams would find using an LMC distance modulus of
18.39.

It is evident in Fig. 7 that the K-TFR defined by the calibrators is inconsistent with
H0 = 70 km s−1 Mpc−1. There are reasons for suspecting the discrepancy between
the HKP results and this study could arise from problems with the HKP distances
and samples. First, it is important to note again that the HKP value of H0 from the
fundamental plane was H0 = 82 ± 9 km s−1 Mpc−1 which is in excellent agreement
with the results of this study.

It was shown in section 5.1 that the HKP I-TFR distances are significantly at odds
with SBF, Cepheid, and GCLF distance estimates for the Antlia and Cen30 clusters
whereas the K-TFR calibration of this study is an excellent fit to the other distance
estimates. In addition, the K-TFR selection criteria used in this sample eliminates
galaxies likely to contribute to Malmquist bias and large distance errors; whereas a
more generous sample selection criteria is employed by Sakai et al. (2000).

The HKP SBF H0 value was determined from only six individual SBF distance
estimates and the HKP Type II SN H0 estimate was determined from only four distance
estimates with three zero point calibrators. These sample sizes used to determine H0

are 6–9 times smaller than the zero point calibrator sample used in this study and do
not compare favorably with the K-TFR sample sizes used to calculate H0 in this study.
In addition, the SBF distances agree well with FP and K-TFR distance estimates for
the closest galaxies, but are systematically too large for the more distant galaxies in
the HKP sample suggesting a possible problem with the SBF at larger distances.

Finally, the HKP used 36 Type Ia SN for which a small comparison sample suggests
excellent agreement between the SN distances and the K-TFR calibration of this study.
However, the HKP again finds a much smaller value of H0 than found in this study. The
reason for this discrepancy will only be resolved with a larger sample of galaxies with
both Type Ia SN and K-TFR distances. However, the discrepancy suggests that either
the HKP Type Ia SN sample or the K-TFR sample of this study inadequately samples
the Hubble flow. Given that the HKP Type Ia SN sample is significantly smaller, and
spread over a much larger distance range (58.0 to 467.0 Mpc) than the ScI and cluster
samples of this study (40.0 to 140.0 Mpc range for all but 2 clusters), it is possible that
the Type Ia SN distances have not uniformly sampled the Hubble flow.

6. Implications for cosmology

The value of the Hubble constant provides an important constraint upon cosmological
models. The HKP value for H0 has been argued to support the �-CDM concordance
cosmology model (hereafter �-CDM – e.g., Spergel et al. 2003, 2006; Hinshaw et al.
2009; Dunkley et al. 2009; Komatsu et al. 2009). In this section we briefly consider
implications for cosmology if H0 = 84 km s−1 Mpc−1.

A basic requirement of any cosmological model is that the universe must be older
than the oldest objects contained within it. Currently, the oldest dated objects in the
Milky Way are globular clusters which have ages as large as ∼ 13 Gyr (e.g., Salaris &
Weiss 2002; Rakos & Schombert 2005). If it is assumed that the Milky Way is nearly
as old as the universe, then any internally consistent set of cosmological parameters
must be able to account for a universe that is at least 13.5 Gyr.

Retaining the prevailing �-CDM parameters with a flat universe, �m = 0.27
and �� = 0.73 a Hubble constant of 84 km s−1 Mpc−1 results in a universe that is
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11.55 Gyr (Wright 2006), younger than the oldest globular clusters. This discrepancy
can be resolved at the cost of a lower matter density and higher dark energy density.
A flat universe with H0 = 84, �m = 0.14 and �� = 0.86 would have an age of
13.71 Gyr (Wright 2006) and would be consistent with the ages of the oldest globular
clusters. However, a matter density of �m = 0.14 is only at best marginally consistent
with the matter density estimated from galaxy cluster studies. Carlberg et al. (1996)
found �m = 0.24 ± 0.05 and more recently Muzzin et al. (2007) find �m = 0.22 ±
0.02.

This discrepancy is made more serious if other galaxies are older than the Milky
Way thus requiring an even older age for the universe. For example, Lee et al. (2001)
found that the globular clusters in NGC 1399 may be several billion years older than
the galactic GC system. Bregman et al. (2006) determined the ages of 29 elliptical
galaxies with IR spectral energy distributions and found eight galaxies (27.6% of their
sample) had ages greater than 15.7 Gyr with the oldest galaxy being 20.6 Gyr. Based
upon the obvious disagreement with �-CDM parameters, Bregman et al. (2006) argued
that this discrepancy might indicate a problem for the absolute accuracy of their age
dates and shifted the ages in their sample into a range that accommodates the standard
�-CDM model. It is noted here that with H0 = 84, the Bregman et al. (2006) ages
would require a matter density of �m = 0.06 to accommodate elliptical galaxies with
ages of 16 Gyr. This matter density is clearly inconsistent with that found from galaxy
clusters (Carlberg et al. 1996; Muzzin et al. 2007).

It is of concern to note that it is not possible to simultaneously reconcile the observed
matter density of the universe (�m = 0.22 ± 0.02), estimated ages of the oldest
globular clusters (∼13 Gyr), and value of the Hubble parameter found in this study
(H0 = 84 ± 6 km s−1 Mpc−1) with �-CDM cosmology. Note that the discrepancy
with �-CDM expectations becomes even more severe when the latest results for the
LMC distance modulus are taken into account because the value of H0 found in this
study is then raised to 88 ± 6 km s−1 Mpc−1. Whether or not this indicates a problem
for the standard cosmological model will require further investigation.

7. Conclusion

The morphologically type dependent Tully–Fisher Relation (Russell 2004) was cali-
brated in the Ks-band for galaxies with a minimum rotational velocity of 150 km s−1.
Distances were derived for galaxies in 16 galaxy clusters and 218 ScI galaxies using
rotational velocities from the Springob et al. (2007) database. Applying unweighted
and weighted means as well as binning of sample galaxies by distance and inclination,
the value of the Hubble parameter was consistently found to fall in the range of 82 to
85 km s−1 Mpc−1with a preferred value of 84 ± 6 km s−1 Mpc−1. If recent results for
the value of the LMC distance modulus are adopted, the value of H0 would increase
to 88 ± 6 km s−1 Mpc−1.

It is very difficult to fit the observed matter density of the universe derived from
galaxy clusters (�m = 0.22 ± 0.02 – Muzzin et al. 2007); ages of the oldest globular
clusters (∼ 13 Gyr – Salaris & Weiss 2002); and the value of H0 found in this study
(H0 = 84 ± 6) with standard �-CDM cosmology. In order to reconcile the age of
the universe for a flat universe with dominant dark energy component and H0 = 84
requires a matter density of �m = 0.14, which is 4.8σ below the value found by
Muzzin et al. (2007).
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While a Hubble parameter of 84 km s−1 Mpc−1 is significantly different from the
value found by Freedman et al. (2001), it was shown that the Freedman et al. (2001)
I-TFR distances to clusters result in a K-TFR for ScI galaxies in clusters that is system-
atically overluminous by ∼0.35 mag relative to the K-TFR defined by 36 calibrators
in this study. Since the HKP I-TFR distances are also inconsistent with SBF, Cepheid,
and GCLF distances to the Antlia and Cen30 clusters, it was concluded that the prob-
lem most likely lies with the HKP I-TFR distances rather than the K-TFR distances
derived in this study. The discrepancy between the HKP I-TFR results and the K-TFR
results of this study might seem puzzling in light of the fact that the 36 calibrators of
this study are fixed to the same Cepheid distance scale utilized by the HKP. However,
sample selection criteria play an important role, and evidence was presented that the
strict selection criteria of this study provide more reliable distances as well as a slope
more appropriate for the faster rotators used in this study.

A Hubble parameter of 84 km s−1 Mpc−1 is also inconsistent with the recent best
estimate from WMAP (Dunkley et al. 2009; Hinshaw et al. 2009; Komatsu et al.
2009) which finds H0 = 71.9 ± 2.7 km s−1 Mpc−1 assuming a six parameter �-CDM
cosmology with flat geometry. The implications of this discrepancy for cosmological
modeling will require further study and it is concluded that the value of H0 found in
this study does not confirm the WMAP value of H0.
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Abstract. By calculation of the proton–proton capture cross-section,
it is shown that the existence of a bound diproton state would not lead to
significant production of diprotons during big bang nucleosynthesis, con-
trary to popular belief. In typical stellar interiors, the stability of diprotons
would lead to a reaction pathway for converting protons to deuterons per-
haps ∼1010 times faster than the usual weak capture reaction. This would
prevent stars of the familiar hot, dense type from occurring in the universe.
However, if diproton stability is achieved by an increase in the low-energy
strong coupling, gs , then stars with temperatures and densities sufficiently
reduced so as to offset the faster reaction pathway to deuterium will appear
to meet elementary stability criteria. The claim that there is a fine-tuned,
anthropic upper bound to the strong force which ensures diproton instabi-
lity therefore appears to be unfounded.

Key words. Big bang nucleosynthesis—star formation—anthropic
cosmology.

1. Introduction

The standard models of particle physics and cosmology involve as many as 31 dimen-
sionless universal constants (Tegmark et al. 2006). It has long been the dream of physi-
cists to derive the numerical values of these constants from underlying mathematical
principles. The early hopes that string theory might achieve this goal have been dashed
by the plethora of possible string theories which are now known to exist (Susskind
2003). Nevertheless, many of the universal constants cannot be varied greatly from
their actual values without fatally compromising the production of a universe within
which highly complex structures, including life, can evolve (Dyson 1971; Carter 1974;
Carr & Rees 1979; Davies 1982; Barrow & Tipler 1986). This has led to a resur-
gence of interest in the anthropic constraint, expressed in recent years in terms of
our location on the string landscape (Dine 2003; Susskind 2003; Davies 2004; Hogan
2006; Linde 2007a). The anthropic perspective fits well with the naturally occurring
multiverse scenarios envisaged in eternal inflation cosmologies (Davies 2004; Linde
1994, 2007b; Guth 2007). Some success can be claimed in regard to specific appli-
cations of anthropic selection, including calculations of constraints on the magnitude
of the cosmological constant, consistent with structure formation (Martel et al. 1998;
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Weinberg 2007); and calculations of constraints on dark matter density, consistent with
solar system stability (Tegmark et al. 2006).

The application of anthropic reasoning works by considering the implications of
varying a chosen universal constant or constants, and determining what magnitude of
variation can have catastrophic consequences for some key feature of the universe. An
example is some change which would result in a universe without hydrogen. Whatever
other elements may exist, the absence of hydrogen would be sufficient to radically
alter the available chemistry. There would be no water, no hydrocarbons, no proteins,
and no hydrogen bonds. There would be no life as we know it. Whether any form
of life could exist without hydrogen is unknown. But, from the point of view of the
multiverse, any such universes are de-selected as candidates for our universe by our
own water-and-protein based existence.

The challenge implicit in such anthropic reasoning is that we must be confident in our
ability to calculate reliably the consequences of specified changes in the magnitudes
of the universal constants. By definition, we are required to assess the properties of a
universe that is not our own. This is intrinsically hazardous. Unlike real-world physics,
we no longer possess the advantage of having the answer at the end of the book (that is,
at the end of an experiment or observation). Placing reliance purely upon theory which
is unverifiable even in principle must be treated with the greatest circumspection. This
paper addresses a salutary example, namely the much quoted implications of diproton
stability.

Dyson (1971); Davies (1972, 1982, 2004); Carr & Rees (1979); Barrow & Tipler
(1986), Rees (1999), and Tegmark et al. (2006) all state that diproton stability would
lead to a universe devoid of hydrogen, since all the hydrogen would be burnt to helium,
via diprotons, during big bang nucleosynthesis (BBN). We claim that this is untrue. This
scenario would be realised only if the proton–proton capture reaction were sufficiently
fast to ensure that virtually all the free protons were captured before the diminishing
temperature and density in the minutes following the big bang led to the reaction
being frozen-out. We shall show that, on the contrary, the pp capture reaction is not
sufficiently fast.

This oft-quoted ‘diproton disaster’ appears to have been based on a false analogy
with neutron–proton capture to form deuterium during BBN. In this paper we shall
show that the proton–proton capture reaction rate is suppressed with respect to proton–
neutron capture as a consequence of the former involving identical fermions. Such a
universe therefore remains unaffected by diproton stability until the first stars form.

There are at least two ways in which diproton stability can be contrived. One is
by an increase in the strength of the strong force (gs), as envisaged in Dyson (1971);
Davies (1972, 1982, 2004); Carr & Rees (1979); Barrow & Tipler (1986); and Rees
(1999). The other is by a decrease in the Higgs vacuum expectation value (v), and
consequently a reduction in the quark masses and a reduction in the pion mass, and
thus an increase in strong binding as a result of the increased range of the nuclear force
(Agrawal et al. 1998a, 1998b; Hogan 2000; Tegmark et al. 2006). In both cases, the
percentage change required (in gs or v) is quite modest. Either scenario is equivalent
as regards what happens during BBN, provided they correspond to the same diproton
binding energy (B). However, they differ as regards their implications for stars.

If a sufficiently large change in the Higgs vacuum expectation value, v, is consid-
ered, then there are profound effects on the cooling mechanisms for star formation and
the heat transfer properties of the stellar medium, due to the changes in lepton masses.
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This has been discussed in Agrawal et al. (1998a). Here we shall consider the alterna-
tive: that diproton stability has resulted from an increase in the low-energy effective
strong coupling constant, gs . This is a simpler scenario for understanding stars in that,
only the nuclear heating is affected. The heat transfer properties, which depend upon
the particle masses and electromagnetic interactions, are unchanged. We shall show
that elementary stability criteria can be met by ‘biophilic’ stars in such a universe;
that is, by stars with lifetimes of the order of billions of years, and with luminosi-
ties and surface temperatures appropriate for the nurturing of biological life based on
conventional molecular chemistry.

There is a danger that this exercise might be regarded as falling into the same trap
as the false claims of a ‘diproton disaster’. The trap is one of hubris. One needs to
bear in mind that the notional variation of a universal constant may be intrinsically
nonsensical. This would be the case if, after all, the numerical magnitudes of the
universal constants are fixed by pure mathematics. But even if different values of
the universal constants do make sense, and perhaps are actually realised within some
multiverse, we fall victim to the sin of Prometheus in imagining that our understanding
is sufficient to embrace its full implications. But this exceeds our far more modest
objective. We claim only to shift the burden of proof back to anyone claiming that
diproton stability is anthropically de-selected.

2. The proton–proton capture cross-section

In what follows we assume gs to have been increased sufficiently for the diproton to
be bound. (Note that this gs is the old-fashioned, low-energy effective strong coupling,
as opposed from the running coupling of QCD determined perturbatively at higher
energies). For definiteness we shall consider increases in gs of 20%, 30% and 40%.
The proton–proton capture cross-section (σ

cap
pp ) is smaller than that for neutron–proton

capture (σ
cap
np ) for three reasons:

1) Most obviously, the Coulomb barrier reduces σ
cap
pp . This is a small effect at BBN

temperatures (∼109K), but accounts for several orders of magnitude reduction in
the corresponding reaction rate at, say, central solar temperatures (∼14 × 106 K).

2) At the non-relativistic energies of interest (< 0.1 MeV), the neutron–proton cap-
ture cross-section can be estimated simply from Schrödinger matrix elements (see
for example, Blatt & Weisskopf 1952; Evans 1955). The dominant contribution
arises from the magnetic dipole term, i.e., the coupling between the nuclear spins
and the magnetic component of the electromagnetic field. However, this matrix
element is proportional to the difference between the magnetic dipole moments
of the two incident particles, and is therefore zero for identical particles, e.g., for
pp capture.

3) The second order term contributing to neutron–proton capture is the electric dipole
interaction, i.e., the coupling between the charge and the electric component of
the electromagnetic field. (The electric dipole cross-section is about an order of
magnitude smaller than the dominant magnetic dipole cross-section at ∼109K,
and about three orders of magnitude smaller at ∼107K). Because the deuteron is
a spin triplet (3S), and because the electric dipole interaction Hamiltonian (HD

I )

is proportional to r · cos θ and does not affect the spin, the only non-zero matrix
element is for an initial spin-triplet P -wave state, i.e., 〈3S(bound)|HD

I |3P (free)〉.
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In contrast, the diproton is a spin singlet state (1S), as required by the exclusion
principle. The relative weakness of the singlet nuclear force is the reason why,
in this universe, the diproton does not exist. The electric dipole matrix element
for proton–proton capture would be 〈1S(bound)|HD

I |1P (free)〉, but of course, the
singlet P -state cannot exist for identical fermions. Hence, the second order term
contributing to σ

cap
np is also zero for σ

cap
pp .

We conclude that the lowest order non-zero term contributing to σ
cap
pp must be the

electric quadrupole term, i.e., 〈1S(bound)|HQ
I |1D(free)〉, where, H

Q
I ∝ r2P2(cos θ).

Thus, it is clear that σ
cap
pp � σ

cap
np .

Standard methods, as in Blatt & Weisskopf (1952) and Evans (1955), may be used
to derive an analytic expression for the cross-section if the Coulomb interaction is
ignored, and in the zero-range approximation,

σ cap
pp = 64πα(�c)2B1/2E3/2

15(Mpc2)3(E + B)
(no Coulomb barrier), (1)

where B is the postulated diproton binding energy and E is the sum of the two incident
protons’ kinetic energies in the centre-of-mass system. When the Coulomb barrier is
included, the cross-section diminishes at sufficiently low energies proportionally to,

σ cap
pp ∝ exp

{
−πα

√
Mpc2/E

}
(E ∼1 keV or smaller), (2)

in the usual way. We have chosen to evaluate numerically the Schrödinger wave-
functions including the Coulomb potential, using a nominal singlet nuclear potential
‘square well’ with a = 2.4 fm and V0 = 16.1 MeV (Blatt & Weisskopf 1952; Evans
1955) noting that great accuracy is not necessary. The potential well depth is increased
proportionally as g2

s , i.e., by factors of 1.22, 1.32 or 1.42, to derive the cross-section
for diproton formation. (These correspond to diproton binding energies of 0.6, 2 and
4 MeV respectively). The numerical results have the low energy behaviour required
by equation (2) and reproduce equation (1) when the Coulomb interaction is removed.
The cross-section (in barns) is plotted against E in Fig. 1, and as a fraction of the
neutron–proton capture cross-section in Fig. 2.

At ∼0.1 MeV, the proton–proton capture cross-section is about 5 orders of magni-
tude smaller than the neutron–proton capture cross-section. At ∼1 keV the difference
is about 15 orders of magnitude. The latter is due largely to the Coulomb barrier. How-
ever, the smaller proton–proton capture cross-section compared to that of neutron–
proton capture at ∼0.1 MeV, a typical BBN energy, is mostly due to the fact that the
former involves identical particles, and hence a quadrupole interaction rather than a
dipole interaction.

A reasonably good closed-form approximation to the numerical cross-section results
(within an order of magnitude for 0.5 keV < E < 5 MeV) is,

σ cap
pp = 64πα(�c)2B3/2E1/2

15(Mpc2)3(E + B)
exp

{
−πα

√
Mpc2/E

}
. (3)

Note that equation (3) differs from the simple product of equations (1) and (2) by an
additional factor of B/E, motivated simply to improve agreement with the numerical
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Figure 1. Numerical results for the pp capture cross-section (barns) versus energy.

Figure 2. Numerical results for the pp capture cross-section as a fraction of the pn capture
cross-section versus energy.

results shown in Fig. 1. Equation (3) tends to overestimate the cross-section in the
energy range of interest, and hence any inaccuracy does not detract from the arguments
which follow.
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The overall reaction rate for a thermal distribution of proton energies is found
by integrating the monochromatic rate, determined from equation (3), appropriately
weighted by the Maxwell distribution. Using a first order approximation for the result-
ing ‘Gamow peak’ integral yields a reaction rate at temperature T given by,

R[T ] ≈ 8 · 22/3

15
πb7/3αA

(
�

Mpc

)2 (
c

Mpc2

)
·
√

B

Mpc2
· exp{−fmin}

(kT )1/6
(4)

where

fmin = 3

(
b

2
√

kT

)2/3

and b = πα ·
√

Mpc2, (5)

and where E � B is assumed. A is the proton number density corresponding to one
mole/cm3 (i.e., 6×1029/m3). Equation (4) gives the reaction rate in s−1 (mole/cm3)−1

for kT in MeV. Using B = 2 MeV for illustration (i.e., for a 30% increase in gs), we
deduce an approximate reaction rate at temperature T ,

R[T ] = 3.5
exp(−fmin)

[kT(MeV)]1/6
s−1(mole/cm3)−1. (6)

Again, any inaccuracies due to the approximations inherent in the derivations of equa-
tions (4) and (6) lead to an over-estimate of the reaction rate, and hence do not detract
from the arguments which follow.

3. Are diprotons formed during BBN?

It is convenient to express results in terms of time (t), taken as correlated with tem-
perature according to T (K) = 1010/

√
t (sec). The photon–baryon ratio is taken to be

2×109. The diproton reaction times over the first hour following the big bang, derived
from equation (6), are given in Table 1.

The condition for reaction freeze-out by cosmic expansion is that the reaction time
exceeds 1/H ∼2t , i.e., that the last column in Table 1 should exceed ∼2. Hence we
see that the diproton formation reaction is frozen out at all times after ∼1 second, and
indeed somewhat before that. The situation contrasts with that for neutron–proton cap-
ture. Consistent with actual big bang nucleosynthesis, Fig. 2 implies that the reaction
times for the latter are shorter than t during this period, as they must be.

To complete the argument that diprotons would not be a product of big bang nucleo-
synthesis we now demonstrate that diprotons would photodisintegrate prior to 1 second.
All neutrons will be assumed to have combined as deuterons before the time at which
diprotons become stable against photodisintegration. (The increased strength of the
nuclear force will increase the binding energy of the deuteron, which will thus always
be stable at higher temperatures than the diproton or the dineutron). The maximum
possible diproton to photon ratio is thus 0.75/(2 × 2 × 109) = 2 × 10−10, noting that
the proportion of remnant protons (∼75%) is not affected by the change in gs .

The simplest estimate of the temperature at which diprotons will be stable against
photodisintegration is obtained by equating the maximum possible diproton:photon
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ratio to the fraction of photons with energies sufficient to cause photodisintegration,
i.e., greater than B. This fraction is, from the blackbody photon spectrum,

0.416
∫ ∞

x1

x2dx

ex − 1
≈ 0.416[2 + 2x1 + x2

1 ]e−x1

where

x1 = B/kT 
 1. (7)

Thus we find x1 = 28.22 and the earliest times at which diprotons are stable are as
given in Table 2.

Thus, diprotons do not become stable until well after ∼1 second for increases in
gs of up to a factor of ∼1.4. The proton–proton capture reaction is therefore frozen
out before diprotons become stable. In other words, proton–proton capture freezes-out
when the diproton density is still negligible. There would therefore be no large scale
production of diprotons during BBN. The existence of a bound diproton state would
not affect the chemical constitution of the primordial universe, which would remain
about 75:25 hydrogen:helium.

In passing, we note that if gs was increased by more than a factor of ∼1.4, then
deuterons would be stable before ∼1 second. At this time the leptonic reactions which

Table 1. Diproton formation reaction times.

t kT Reaction rate Proton Reaction Reaction
(s) (MeV) s−1(mole/cm3)−1 density/m3 time (s) time/t

1 0.86 0.75 7.5E + 27 100 100
10 0.27 0.43 2.3E + 26 6,000 600
30 0.16 0.30 4.9E + 25 41,000 1,400
50 0.12 0.24 2.1E + 25 1.2E + 5 2,400

100 0.086 0.18 7.5E + 24 4E + 5 4,500
200 0.061 0.13 2.7E + 24 2E + 6 9,000
300 0.050 0.10 1.5E + 24 4E + 6 13,000
500 0.039 0.074 7.0E + 23 1E + 7 24,000

1000 0.027 0.044 2.3E + 23 6E + 7 60,000
2000 0.0193 0.026 8.5E + 22 3E + 8 140,000
3000 0.0157 0.018 4.6E + 22 7E + 8 240,000
5000 0.0122 0.011 2.2E + 22 2E + 9 500,000

Table 2. Times and temperatures for diproton stability
for various g/gactual.

g/gactual B (MeV) T (K) t (s)

1.2 0.6 2.5 × 108 1,600

1.3 2 8.2 × 108 150

1.4 4 1.65 × 109 37



126 R. A. W. Bradford

interconvert neutrons and protons would still be active. The neutron:proton ratio is
determined by thermodynamic equilibrium at such times. Hence, a substantial sup-
pression in the hydrogen inventory of the universe would result if gs was increased
sufficiently to stabilise the deuteron at a small fraction of a second. For example,
increasing gs by a factor of ∼ 4 would result in a universe with only ∼ 3% hydrogen.
However, the diproton is irrelevant in this scenario.

4. What effect does diproton stability have on stars?

It would appear that the stability of the diproton makes no difference to the primordial
universe, which would retain its approximately 75:25 1

1H : 4
2He constitution (by mass).

However, the effect on star formation would obviously be dramatic. For example,
at a solar central temperature of ∼15 × 106 K, the pp capture reaction rate would
be about 10−5s−1(mole/cm3)−1, and a solar central proton density of 4 × 1031m−3

would lead to a pp reaction time of less than an hour. Thus, the rate of production of
deuterons would be controlled by the rate of the weak decay of the diproton. Even if
this were the order of a year, the overall deuteron production rate would be ∼ 1010

times faster than the usual weak capture reaction p+p → D+e+ +νe under the same
conditions.

However, the diproton reaction is so rapid under solar temperature and density con-
ditions that it would be explosive. Stars of this type could not form. It is clear, therefore,
that the universe would be radically different from the actual universe once star for-
mation started. What is not clear is whether stable, long-lived, stars would form with
temperatures and densities suitably reduced so as to offset the faster reaction pathway
to deuterium. We do not pretend to provide a definitive answer to this question here.
However, the answer appears to be less clear cut than is often implied. In particular,
the fact that the first, and rate controlling, nuclear reaction is intrinsically faster – even
if it be 1010 times faster – does not preclude the possibility of stable, long-lived stars.
The reason is that nuclear fusion reaction rates between charged reactants are expo-
nentially sensitive to temperature. Consequently, even enormous intrinsic reaction rate
differences can be tamed by relatively modest changes in core temperature. Thus, it is
possible to have a strong-force mediated fusion reaction as the rate controlling step in
stellar heat production, as was also envisaged by Harnik et al. (2006). To see this, con-
sider a hypothetical star with a central temperature of 106 K in a universe with stable
diprotons.

There are several elementary constraints which a stable star must respect. For exam-
ple, dynamical stability requires that the radiation pressure within the star should not be
too much larger than the gas pressure. This constraint leads to the familiar upper bound
on stellar masses, in the order of ∼100 solar masses, a limit which will also apply in
our alternative universe. This constraint can also be written as a lower bound on the
gas density required for stability, namely ρ > 0.1Mp(kT /�c)3, which is 0.015 kg/m3

for our example (Mp is the proton mass).
The star must also be able to transport heat efficiently enough to balance the rate

of nuclear heat generated. At the centre of the star there is a maximum power density
consistent with purely radiative heat transfer, i.e., εv < εmax

v = 4πcGρ/κ , where κ is
the opacity (the subscript v denotes power per unit volume). Since the power density
depends upon the square of the proton density, this limit on power density results
in an upper limit on proton density. It evaluates to about 2.6 kg/m3 for our example.
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This is based on the diproton reaction rate from equation (6) together with the reaction
sequence given in the Appendix. Of significance is the fact that at 106 K, and a density
of 2.6 kg/m3, the opacity of pure hydrogen is only beginning to rise above the lower
bound provided by Thompson scattering (namely ∼0.3 m2/kg, compared with the
Thompson opacity of 0.034 m2/kg).

Satisfying hydrostatic equilibrium and heat balance everywhere within the star
would determine the unique central density for a given central temperature (if any
stable solution exists). In the absence of a complete stellar model, however, we have
instead derived the range within which the central density must lie, namely between
0.015 kg/m3 and 2.6 kg/m3.

An estimate for the star’s lifetime is provided by the reaction time based on equation
(6), noting that this is the slowest reaction in the subsequent sequence, as demonstrated
in the Appendix. Using the above limiting densities suggests lives between 200 Myrs
and 30 Byrs. This encompasses the biophilic range, permitting biological evolution
the order of billions of years to carry out its work.

The mass of our star may be estimated from kTc ≈ 0.24GMpM2/3ρ
1/3
c , which is

an approximate rendering of the virial condition (i.e., being gravitationally bound),
except that average quantities have been replaced by their central values. This implies
masses of between ∼3 and ∼50 solar masses (the latter being, by construction, of
the lower bound density). These fall within the usual stellar range and hence seem
achievable, e.g., there is no obvious objection as regards the availability of cooling
mechanisms during star formation.

Estimation of the surface temperature is more contentious. To do so we have assumed
that one quarter of the star’s mass is involved in nuclear reactions at the central rate. This
results in luminosities of 300 to 8000 times solar luminosity. The radius is estimated
using R ≈ 2.5(M/ρc)

1/3, which suggests sizes 50 to 650 times solar size. Finally, the
preceding results imply a surface temperature between 1400 K and 7600 K. Thus, the
surface temperature is quite uncertain, but is not obviously inconsistent with planetary
life based on conventional biochemistry. The point here is that biophilic stars require
surface temperatures consistent with photons of an energy compatible with driving
photosynthesis, or some comparable biochemistry.

Of course we have not definitively established that such stars could exist. To do
so would require explicit demonstration that hydrostatic equilibrium and heat balance
were respected at all points in the star, i.e., a complete stellar model. More problematical
still, in our present state of knowledge, would be the requirement to demonstrate that
such stars could actually form. Fortunately this is not where the burden of proof lies.
We have seen that the elementary stability constraints can be consistent with a star
which is sufficiently long-lived, sufficiently luminous, and has a suitable range of
surface temperatures, to mimic the actual conditions of our universe to some approxi-
mation. In view of this, the burden of proof lies with any contention that diproton
stability is anthropically catastrophic. It would appear not to be.

It is rather remarkable that a reaction which is so many orders of magnitude faster
than the usual weak pp capture reaction, can result in a stable star simply by reducing
the temperature and density. It is reasonable to ask whether this trick could be repeated
for an even faster reaction. The limit may be that at still lower temperatures the opacity
will start to climb steeply (Kramer’s opacity ∝ 1/T 7/2). This will severely restrict the
power density which can be balanced by purely radiative heat transfer. It appears that
our example is close to this limit.
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It is amusing to speculate how physicists in an alternative universe, containing
stars exclusively like that of our example, might view their situation. They might
point to three remarkable ‘coincidences’. The first would be that the Thompson lower
bound opacity is attained at a temperature just low enough to support the required
stellar heat transport. The second would be the good fortune that identical particles
were involved in the first stellar reaction, thus suppressing the reaction rate due to
the exclusion principle, and hence creating stars of sufficient longevity to support
biological evolution. The third piece of luck, undeniable surely, would be that the
strong nuclear force was just strong enough to bind the diproton – without which the
first stellar nuclear reaction would not be possible, and hence there would be no stars
and no chemical elements!

5. Conclusions

Increases in gs sufficient to bind the diproton do not lead to significant production
of diprotons during BBN. This has been demonstrated by direct evaluation of the pp
capture rate for increases in gs of up to 40%, corresponding to diprotons being roughly
twice as stable as deuterons are in our universe (i.e., a binding energy of ∼4 MeV).

Under solar conditions, the stability of diprotons would lead to a reaction pathway
for converting protons to deuterons perhaps ∼10 orders of magnitude faster than the
usual weak capture reaction. This would prevent stars of the familiar hot, dense type
from occurring in the universe. Nevertheless, elementary stellar stability requirements
can be met by lower density stars, with lower central temperatures, when the diproton
is stable. Such a universe therefore appears compatible with stars whose lifetimes are
of the order of billions of years, and whose luminosities and surface temperatures
are appropriate for the nurturing of biological life based on conventional molecular
chemistry.

The above observations challenge the contention that the strong nuclear force has a
fine-tuned anthropic upper bound requiring the diproton to be unbound.

However, this does not preclude there being other mechanisms which might impose
an anthropic upper bound to the strong nuclear force. One possibility is the well-
known ‘Hoyle’ resonance energies which promote the production of carbon and oxygen
in stars. Even very small changes in gs would presumably play havoc with these
very delicate nuclear balances. We also note that increases in gs rather greater than
40% would lead to deuterium being stable before 1 s. At such times the leptonic
reactions which interconvert protons and neutrons were still active. The neutrons would
thus escape into the sanctuary of helium-4 whilst the neutron:proton ratio was still
determined by thermal equilibrium. If gs was increased by a factor of ∼4, so that
deuterium was stable at about a millisecond, the primordial universe would contain
only ∼3% hydrogen. It is not clear if this is anthropically deselected, but if so it is a
far weaker tuning of gs than is usually envisaged.

Appendix – Stellar ‘ppI’ reaction sequence with a stable diproton

The possibilities for the reaction sequence, analogous to the usual ppI sequence, are
listed in Table 3. Reactions involving nuclei with Z > 2, analogous to the ppII/ppIII
sequences, have been ignored for simplicity, as have reactions involving neutrons as a
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Table 3. Reactions and rates analogous to the ‘ppI’ sequence for a stable diproton.

Rate at 106K
Label Reaction s−1(mole/cm3)−1 Reference

[1a] p + p → 2
2He + γ 3.5 × 10−14 Herein

[1b] 2
2He → 2

1D + e+ + νe Assumed fast –

[2] p + D → 3
2He + γ 1.64 × 10−11 Smith (1988)

[3] 3
2He +3

2 He →4
2 He + 21

1p 1.46 × 10−41 Hoffman (2002)

[4] 2
1D +2

1 D →4
2 He + γ 7.85 × 10−16 Hoffman (2002)

[5] 2
1D +2

1 D →3
1 H +1

1 p 6.72 × 10−9 Hoffman (2002)

[6] 2
1D +2

1 D →3
2 He +1

0 n 6.33 × 10−9 Hoffman (2002)

[7] 3
1H +2

1 D →4
2 He +1

0 n 1.88 × 10−7 Hoffman (2002)

[8] 3
1H +1

1 p →4
2 He + γ 3.56 × 10−11 Smith (1988)

[9] 3
2He +2

1 D →4
2 He +1

1 p 3.84 × 10−19 Hoffman (2002)

[10] 3
2He +3

1 H →4
2 He +2

1 D 1.42 × 10−22 Hoffman (2002)

[11] 3
2He +3

1 H →4
2 He +1

0 n +1
1 p 2.0 × 10−22 Hoffman (2002)

reactant. The reaction rates given below have been taken from either Hoffman (2002)
or Smith (1988), with the exception of [1a] which is derived above as equation (6).
No correction has been made for the increased strength of the nuclear force as regards
the rates of reactions after [1a]. For the electromagnetic reactions, this is reasonable.
The justification for the other reactions is that reaction [1a] will be found to be the rate
determining step. Hence, faster subsequent reactions will not cause a major change to
the scenario outlined below.

The usual ppI sequence involves reactions [2] and [3]. At the low temperature
considered, the reactions involving reactant nuclei with double charges are strongly
suppressed by the Coulomb barrier. In particular, reaction [3] is not active and so the
ppI sequence in our alternative universe must follow a different path. Reactions [4],
[9], [10] and [11] are also too slow to contribute significantly. The dominant reaction
sequences are thus,

[1a] → [1b]
↗ [2] + [6] (3He production)

↘ [5] → [7] + [8] (4He production).

Note that helium-3 is not burnt at this temperature. The above rates are consistent
with the timescale of the hydrogen burning phase being determined by reaction [1a].
Equilibrium deuteron and tritium densities are around 10−3 and 3×10−5 of the proton
density respectively. The end product of the hydrogen burning phase is a mixture of
roughly 75% helium-3 and 25% helium-4. Such a star would exhibit a distinct helium-
3 burning phase after the hydrogen phase (following additional gravitational collapse
to raise the temperature sufficiently to activate reaction [3]). Only after exhaustion of
the helium-3 would the usual helium-4 burning phase occur, following further collapse
of the core.
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The power density suggested in the main text is an upper bound based on full
conversion to helium-4 in the hydrogen burning phase. The heat released per helium
nucleus equals, to a good enough approximation, the helium-4 binding energy less
twice the neutron/proton mass difference. The binding energy is increased significantly
in our hypothetical universe. Based on the energy levels of a square potential well, we
estimate the binding energy to be,

B

Bactual
=

(
gs/g

actual
s − 0.85

1.0 − 0.85

)2

,

because a reduction in gs to ∼0.85gactual
s results in the deuteron being unbound (i.e.,

B = 0). This results in helium-4 binding energy estimates of 154, 255 and 380 MeV
respectively, for gs increased by ×1.2, ×1.3 and ×1.4. The energy release is thus quite
prodigious by normal standards. If the binding energy was estimated assuming scaling
according to (gs/g

actual
s )4 we would get 57, 81 and 109 MeV respectively. Hence, we

have employed a rather generous upper bound power density since this strengthens the
arguments of the main text.
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Abstract. 1009-0252 is a Quasi Stellar Object (QSO) with three com-
ponents A, B, C. A, B are thought to be the result of gravitational lensing
of one object, and A, C constitute a close pair with redshifts 2.74 and 1.62
respectively. Close separation pairs of QSOs with discordant redshifts have
received special attention in recent years, probably because of the possi-
bility that they may be physically associated, implying non-cosmological
redshifts. Attempts have been made to explain their occurrences due to
the effect of gravitational lensing. However, gravitational lensing has not
offered a completely satisfactory explanation for this triplet. Furthermore,
examination revealed some inadequacies and inconsistencies in the red-
shift identification of the observed lines in the component A. Observational
results of 1009-0252 therefore remain puzzling. We propose an alternative
explanation by suggesting that A, B actually constitute a close pair and C
is an unrelated object in the field. We show that the observed spectrum of
A can be interpreted as blueshifted. This implies that A, B are two separate
objects, one (A) approaching us and the other (B) receding from us, and
are not the result of gravitational lensing of a single object. The oppositely
directed pair A, B may have been ejected due to the merger of two galaxies.

Key words. Quasars: emission lines, absorption lines—individual:
Q 1009-0252—cosmology: miscellaneous.

1. Introduction

Several close pairs of Quasi Stellar Objects (QSOs) have been observed in recent
years, some with identical redshifts and others with discordant redshifts. The former
includes 1429-008A, B (Hewett et al. 1989), 2153-2056A, B (Hewett et al. 1998) and
the latter includes 1009-0252A, B (Hewett et al. 1994; Claeskens et al. 2001; Sluse
et al. 2003), 1148+0055 (Claeskens et al. 2000; Sluse et al. 2003), 1548+114A, B
(Wampler 1973; Claeskens et al. 2000; Sluse et al. 2003). Such pairs have attracted
considerable extra interest and attention, one reason being the possibility that the pairs
may be physically associated implying a non-cosmological origin of QSO redshifts,
and attempts have been made to explain the occurrences of the close pairs in terms of
gravitational lensing (see references later in this section).
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1009-0252 is one such system with three components (Hewett et al. 1994, hereafter
H94). The system was independently discovered by Surdej et al. (1994) with the ESO
Key Project. Components A and B have identical redshifts 2.74 and are separated from
one another by 1′′.55. The third component C has a redshift 1.62 and is separated by
4′′.6 from A and B. Further, both A and B exhibit absorption lines which have been
identified for two redshift systems, viz., 0.869 and 1.622, the latter happens to be equal
to the emission redshift of the component C, and is thought to be due to gas clouds
associated with a cluster hosting C (Claeskens et al. 2001, hereafter C01). Objects A
and B, resulting from the gravitational lensing of one QSO, are regarded as the same
object, and the object C is regarded differently. As such, the triple system has been
considered to form a close pair QSO between components A (which is same as B) and
C with discordant redshifts (C01; Sluse et al. 2003).

However, extensive studies of gravitational lensing for the occurrences of close
pairs of QSOs with discordant redshifts have been carried out for several pairs.
These studies did not find any potential luminous deflector for 1120+019 (Maylan &
Djorgovsky 1989), 1429-008 (Hewett et al. 1989), 1635+267 (Djorgovsky & Spinard
1984) or 2345+007 (Weedman et al. 1982), and any geometrical analysis between an
observer, a deflector and the source was not considered worthwhile. Again, obser-
vational evidences in 1148+0055 and 2143-2056 did not support the gravitational
lensing hypothesis, although the possibility that the pair in the latter may have resulted
from gravitational lensing has not been ruled out (Hewett et al. 1998). Furthermore,
no secondary lensed image, expected due to gravitational lensing effect, was detected
in 1548+114 (Claeskens et al. 2000; Sluse et al. 2003).

Nonetheless, some of the observed properties of 1009-0252 can be explained by the
gravitational lensing hypothesis for A and B. But, under this hypothesis, several factors
must be responsible for the differences observed in the properties of the continuum
and emission features of individual components, viz., differential flux or differential
extinction by dust from the lens to each component, or variability of the QSO that has
been lensed, or the effect of differential microlensing due to a compact object, all of
which have been ruled out (H94). However, a lensing galaxy has recently been claimed
to be detected at a redshift ≈ 0.8, which can be associated with the absorbing cloud at
the redshift 0.869, and flux variability has also been claimed to be observed for both
A and B (C01). But these authors would not make any definite conclusion with the
present data, and have suggested further observations.

It appears that a completely satisfactory explanation with the gravitational lensing
hypothesis may not have been established for 1009-0252. The remarks of H94 is
noteworthy in this connection: “None [no explanation] provide an entirely satisfactory
quantitative match to the observation” and also, “components A and B may be physi-
cally distinct quasars”. Moreover, the redshift identification of the observed lines in
A shows some inconsistencies and inadequacies (see section 3). Observational results
of the triple system QSO 1009-0252 with discordant redshifts thus remain puzzling.
We were therefore prompted to look for an alternative explanation. We suggest that
the occurrence of A and B is not due to the gravitational lensing of a single object.
Instead, in our opinion, A and B are separate objects forming a close pair and C is
another unrelated object in the field.

The pair is probably produced on being ejected in opposite directions. This would
imply that one component in the pair is approaching us and would exhibit a blueshifted
spectrum, while the other component is receding from us, and would exhibit a
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redshifted spectrum. As discussed in section 3, the rest frame equivalent widths of the
major emission lines of the component A identified for the redshift determination are
too small for these lines, and as such, this redshift may have been determined due to
misidentification of the lines. The same lines in the component B are 1.2 to 1.3 times
stronger, and their identifications appear correct. The purpose of this paper is to show
that the spectrum of the component A can be better interpreted as blueshifted.

In what follows, we review observations of blueshifts in extragalactic objects in
section 2. In section 3 we demonstrate some inadequacies and inconsistencies in the
current interpretation of the spectrum of 1009-0252A involving redshifts. Section 4
deals with our interpretation of the spectrum in terms of blueshifts. Results are dis-
cussed in section 5. In section 6 we propose an ejection mechanism scenario to explain
the close pair production involving the observed blueshift. Finally, some concluding
remarks are presented in section 7.

2. Blueshifts

It is the usual practice of the astronomers to identify search lines with observed spectral
lines located at the red side and determine redshifts in extragalactic objects. Identifi-
cation programmes are, almost as a rule, prepared for determining redshifts only, and
blueshifts are not considered at all.

On the other hand, the ejection process is a well recognized mechanism for the birth
of QSOs. However, the ejection mechanism, applied by researchers so far, has always
assumed ejection away from the observer and thus producing redshifts, although, the
ejection should occur in all directions with equal probability. Gordon (1980) and
Popowski & Weinzierl (2004) have shown that, under suitable conditions, an appre-
ciable fraction of the vast number of currently known QSOs should exhibit blueshifted
spectra if originated through ejection from parent galaxies, as conditions cannot always
be satisfied for redshifts only. This basic notion appears to have been ignored in all
models so far, and the ejection has always been considered away from us only, based
on the assumption that blueshifted spectra do not exist. The latter, in its turn, is based
on the fact that all line identification programmes are geared to the redshift determi-
nation only, as mentioned above.

Recent analyses have demonstrated that blueshifts can explain the observed spectra
of extragalactic objects. Spectra of 15 high redshift galaxies were re-analysed and their
spectra were shown to be blueshifted, redshifts assigned to them are probably misidenti-
fications of observed lines (Basu 1998). The unusual spectrum of STIS123627+621755
(Chen et al. 1999) could not be explained when further observations were presented
by Stern et al. (2000), leaving the redshift “undetermined” (Chen et al. 2000), and
the spectra has subsequently been interpreted in terms of blueshifts (Basu 2001a).
Re-examination of host galaxy spectra of four Supernovae Ia (Basu 2000) and those of
four Gamma Ray Bursts (Basu 2001b) have led to the determination of their blueshifts.
Furthermore, spectra of 25 QSOs were also reanalysed and search lines of longer
wavelengths were identified with their observed lines to compute blueshifts (Basu
& Haque-Copilah 2001), redshifts may have been assigned to these objects due to
misidentification of the observed lines. Spectra of three additional QSOs, viz., SDSS
1533-00, PG 1407+265 and PKS 0637-752, which could not be explained in terms of
redshifts, were interpreted successfully in terms of blueshifts (Basu 2004). Another
QSO, viz., PKS 2149-306 and an AGN CXOCDFS J033225.3-274219, each exhibit
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an emission feature in its X-ray spectrum which could not be explained in terms of
the redshift determined from its optical spectrum (Yaqoob et al. 1999; Wang et al.
2003), and blueshift has succesfully interpreted the complete spectra (optical and
X-ray) for each of these objects (Basu 2006a). Again, the X-ray source 1E 1207.4-
5209 thought to be an isolated neutron star associated with the SNR G296.5+10.0,
exhibits several absorption lines in the optical spectrum and also three confirmed
variable absorption features in the X-ray spectrum at apparently harmonically related
wavelengths, the latter being interpreted as due to cyclotron resonance. However, this
interpretation has been found to show many inconsistencies, and both spectra have
now been successfully interpreted as blueshifted (Basu 2006b). Further, several pairs
of QSOs have been observed, with the two objects in each pair lying across an active
galaxy, and the spectrum of each QSO in the pair has been interpreted as redshifted,
apparently based on the assumption that both are moving away from the observer after
being ejected from the parent galaxy. However, more logically, the two objects in the
pair should be ejected in opposite directions and one spectrum should exhibit redshift
moving away from the observer and the other should exhibit blueshift moving toward
the observer. Spectra of four such pairs have been re-analyzed and one spectrum in
each pair has been shown to exhibit blueshift (Basu 2006c). Objects like close pairs
of QSOs with discordant redshifts, explanations of whose occurrence are inconclu-
sive, should be particularly considered in this respect for the possibility of blueshifted
spectra.

Moreover, GRB 011211 exhibits a redshift 2.14 computed from several absorption
lines in its optical afterglow (Fruchter et al. 2001; Holland et al. 2002), while its X-ray
afterglow shows several emission lines that yield a mean redshift 1.862 (Reeves et al.
2003). The energetics of the GRB has been explained by a supernova model on the
basis of the mean redshift of the GRB as 2.141 (Reeves et al. 2003). However, some
severe inconsistencies exist in the determination of the redshift of the spectra. It has
been demonstrated that the observed spectra cannot be explained in terms of redshifts
and, instead, the complete spectra comprising the optical and the X-ray, have been
interpreted in terms of blueshifts (Basu 2009).

3. The current interpretation

The emission spectra of A and B demonstrate that these are ‘reasonably similar’, but
certainly not identical. There are several discrepancies between the two components.
The equivalent widths of the lines are significantly different for A and B, B is fainter
than A, the continuum slope of B is redder than that of A. Moreover, the spectra
exhibit an unexpected feature at 6550 Å, identified as ‘the extremely rare’ search line
[NIII] 1750. The feature is prominent in the component B, ‘while component A may
contain a weak, somewhat broader feature at 6550 Å’ (H94), and the feature ‘is faintly
visible in the spectrum of both components’ (C01). Furthermore, examination of the
spectrum of 1009-0252A revealed an additional emission line around 7723 Å which is
not mentioned in C01, but appears real.

On the other hand, the redshift identification of observed lines in 1009-0252A
shows several inconsistencies and inadequacies. It is known that Lyα + NV, CIV, CIII
are three of the strongest lines in the search list for the redshift identification. Rest
frame equivalent widths 28.4 Å, 24.6 Å, 6.4 Å obtained for these lines respectively (see
Table 1), are too small for these lines.
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Figure 1. Spectrum of the component A of the triple system QSO 1009-0252A, B, C, adopted
from Claeskens et al. (2001), with positions of identified lines, blueshifted as shown in Table 1,
marked. The abscissa denotes the observed wavelengths. The spectrum has been extracted using
the MEM method as presented in C01. Also, the data are smoothed slightly using five pixels
filter box.

Additionally, three absorption lines, viz., those at 4962.77 Å, 5032.48 Å and
5043.08 Å, have either no or doubtful identifications. The lines at 5239.41 Å and
5255.93 Å have been identified with MgII doublet with wavelengths in the reverse
order. The lower wavelength 5239.41 Å has been identified with the higher wavelength
MgII 2803 and the line at 5255.93 Å has been identified with MgII 2796. Also, there
is a serious error in the redshift computation of the line at 5255.93 Å which should be
0.8798 and not 0.8688.

4. The blueshift interpretation

We have interpreted the observed spectrum of 1009-252A, both emission and absorp-
tion, in terms of blueshifts, by identifying the observed lines with search lines of longer
wavelengths as shown in Fig. 1 and Table 1.

In Table 1, column (1) gives the type of spectrum whether emission (EM) or absorp-
tion (ABS), column (2) is the observed wavelength (λo), column (3) is the observed
equivalent width when available (Wo), column (4) is the search line used for identifica-
tion for the redshift measurement (λr), column (5) is the redshift value (zr), column (6)
is the emitted equivalent width corresponding to the redshift (Wer), column (7) is the
search line used for the identification of blueshift measurement (λb), column (8) is the
blueshift value (zb) and column (9) is the emitted equivalent width corresponding to
the blueshift (Web).

It will be seen in Table 1 that we have identified all the observed lines, emission and
absorption, exhibited by the spectra. The identified lines include usual Balmer, oxygen,
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Table 2. Mean redshifts, blueshifts and spreads.

EM/ABS (1) zrm (2) �zr (3) zbm (4) �zb (5)

EM 2.7252 0.0371 0.3044 0.0288
ABS I 0.8689 0.0109 0.4304 0.0097
ABS II 1.6266 0.0006 0.7506 0.0086
ABS III 0.7992? 0.0000? 0.3258 0.0076

nitrogen, sulphur and helium lines in emission, of reasonable rest frame equivalent
widths. Figure 1 shows the actual emission line spectrum of 1009-0252A with the
blueshifted features identified. We have identified the feature at 4539 Å (Lyα1216 +
NV1240 in the redshift scenario) as Hα6563 and [NII]6584. Absorption features have
been identified, in three systems, viz., an oxygen line and the calcium triplet for the first
system (ABS I), molecular lines of hydrogen including the strongest H2 21218 feature
for the second system (ABS II), and Paschen series, helium and oxygen lines for
the third system (ABS III). These are all well recognized search lines observed in
the extragalactic literature.

The standard procedure has been followed in computing blueshift values in emission
and absorption, viz., a ‘shift’ (red or blue) can be confirmed only when a minimum
of two observed lines exhibit the same value after being identified with two separate
search lines, and any third or more observed lines have also to obey this value when
identified with other separate search lines (Basu 1973a, 1973b). In some cases, the
stronger component of a doublet and/or the lower order line(s) of a series have been
identified but the weaker component of the doublet and/or the higher order line(s) may
be too weak to be seen, or the weaker component of a doublet and/or the higher order
line(s) of the series have been identified but the stronger component of the doublet
and/or the lower order line(s) are outside the observed region of the spectrum.

Additionally, we have also computed the quantity ‘spread’ for both redshift and
blueshift systems, which is a measure of the goodness of fit for the identification
process (see section 5).

Table 2 summarizes the result and shows emission (EM) or absorption (ABS)
systems (column 1), mean redshifts zrm (column 2), spreads in redshift systems �zr

(column 3), mean blueshifts zbm (column 4), spreads in blueshifts �zb (column 5).
1009-252A has the blueshift 0.3044, and exhibits three blueshift systems in absorption,
viz., 0.3258, 0.4304 and 0.7506.

5. Discussion

The spread (�z) is a measure of the range of values in each system, redshift (r) or
blueshift (b), and is computed as the difference between the maximum and minimum
values in the ‘shift’ (red or blue) in each system.

It should be noted that, in principle, the spread should be small – close to zero.
However, the spread depends on the values of the ‘shift’ (red or blue) of individual
lines, and the latter, in its turn, depends on the exact value of the observed wavelength
(λo), which is the centroid of the line profile used for the determination of the ‘shift’.
λo is very difficult to be determined accurately in practice even in high s/n and high
resolution records, as the profile may be double- or multi-peaked, broad, blended, of
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complex nature due to various physical reasons. Hence, at least upto a certain extent,
the spread may be due to some real physical effect rather than any error.

Table 2 demonstrates that the spread varies between 0.0006 and 0.0371 for red-
shift systems (without considering the third doubtful system), and between 0.0076
and 0.0288 for blueshift systems, the latter being somewhat smaller than the former.
Furthermore, redshift literature would reveal that for absorption systems �zr < 0.01.
Table 2 shows that, for at least one system, �zr > 0.01. The blueshift systems (ABS)
have all �zb < 0.01.

Furthermore, the spectrum of the component A also exhibits a series of absorption
features, the so-called ‘forest’ blueward of the emission line at 4539 Å. In the blueshift
interpretation, these features constitute the Hα forest which corresponds to the Lyα

forest in the redshift interpretation. However, Hα forest implies that these absorptions
originate from higher levels which, in turn, implies that these levels should be popu-
lated. This, again, in turn, necessitates that the particle density of the intergalactic
medium (IGM) should be large. Unfortunately, this is not well known in the existing
literature. Nevertheless, it is known that soft X-ray detection is an indicator of such
particle density, and further investigation is suggested in this respect. It is interesting to
note in this connection that Lyβ, OVI, and CIII forest (Danforth et al. 2006), and also
X-ray forest (Nicastro et al. 2005) have been reported recently to suggest absorption
in IGM.

Finally, it should be noted that the blueshift determined here for the spectrum of
1009-0252A is the shift in the wavelengths of the lines emitted by the component
A to the wavelengths measured on earth by the earth-bound observer. The blueshift
value is not the result of the Doppler effect alone, but is the result of superposition
of the cosmological redshift produced by the general expansion of the universe and
the Doppler shift due to the component A approaching the observer produced by
the ejection mechanism as described in section 6 below. 1009-0252, A and B both
components are therefore cosmological objects and not local ones.

Furthermore, it is known that Doppler shifting of the continuum is expected to
give rise to an enhancement of the optical luminosity of the QSO for large blueshifts,
since the infrared (IR) part of the continuum spectrum is shifted to the optical part
and the IR continuum of QSOs exhibits a steep rise in the spectrum (Burbidge &
Burbidge 1967). However, as seen in Table 1, the identified lines are located in the
near-infrared (NIR) region and not in the IR region. The same is therefore true for the
continuum involved. As such, the optical luminosity of A is expected to be somewhat
large but certainly not very large for the blueshifted spectrum, as it is the less strong
NIR part of the continuum and not the much stronger IR that is being blueshifted to the
optical part. This is supported by the observational evidence (H94) which shows that
the component A (blueshifted spectrum) is really somewhat more luminous than the
component B (redshifted spectrum), the B,V magnitudes of A and B being 18.2, 17.9
and 20.3, 20.5, respectively.

6. The close pair production: a proposed scenario

The analysis presented here shows that the close separation pair QSO 1009-0252A, B
comprises two separate objects – one approaching us and thus exhibiting blueshifts,
the other moving away from us and thus exhibiting redshifts – and is not produced
by the gravitational lensing of a single object. We propose a scenario in terms of the
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ejection mechanism to explain the production of the close pair involving the observed
blueshifts.

It is known that merger of black holes may lead to their ejections in oppositely
directed pairs due to the inherent instability of the systems – the so called ‘sling-
shot’ mechanism (Saslaw et al. 1974; Valtonen 1976a, 1976b). This situation may
arise when two galaxies, each hosting a supermassive black hole at its centre, merge.
Supermassive black holes are known to be seats of activities at the centres of galaxies
(Basu et al. 1993; Capetti et al. 2005). A binary system is believed to be initially
formed by the two central black holes (Valtaoja et al. 1989). Such systems have indeed
been detected in NGC 6240 (Kommossa et al. 2003), probably in OJ 287 (Valtonen
et al. 2006) and in SDSS J153636.22+044127.0 (Boronson and Lauer 2009). Further
progress in the merger process would lead to the ejection of supermassive black holes
(primaries) at relativistic or non-relativistic speeds (Mikkola & Valtonen 1990). It
is noteworthy here that Haehnelt et al. (2006) have recently presented evidence of
ejection of a supermassive black hole by the ‘sling-shot’ mechanism resulting from
merger of galaxies. In addition, satellite black holes of intermediate masses are also
believed to be usually accompanying the central supermassive black holes in galaxies
(Carr 1978; Carr et al. 1984) and are ejected during the merger process, some of them
assuming eccentric orbits around the primary ones (Valtonen & Basu 1991).

Again, a black hole at the centre of a galaxy is also known to possess a gaseous
accretion disk around it, which survives the tidal disruption that accompanies the ejec-
tion process (Rees & Saslaw 1975; Lin & Saslaw 1977; De Young 1977). The interac-
tion between the disk with the black hole and the surrounding may lead to the formation
of a QSO (Rees 1984; Osterbrock & Mathews 1986; Valtonen & Basu 1991; Spriegel
et al. 2005). It is reasonable to envisage that the satellite black holes, presumably also
possessing gaseous disks, would undergo the same process of interaction with the
gaseous disks around them and the surroundings, as their primary counterparts, albeit
at reduced scales owing to their smaller masses, and would end up as faint or nascent
galaxies.

The final result of the ejection process due to the merger of two galaxies is the birth
of two QSOs ejected in opposite directions each accompanied by several galaxy-like
objects, the latter acting as absorbing clouds if and when lying along the line of sight.
To this respect, it was shown earlier (Basu 1982) that absorbing clouds are probably
linked with the birth of a QSO itself. Also, faint or nascent galaxies associated with
QSO-like objects have been observed (Dressler et al. 1993; Tripp et al. 1999; Teresse
et al. 1999).

In principle, of course, it is possible for the ejection to occur in any direction.
However, the probability of the occurrence toward the observer is non-zero. Hence, it
is conceivable that 1009-0252A is the result of the ejection process and is approaching
us exhibiting blueshifts in emission and absorption lines, the latter being produced by
the accompanying three absorbing clouds. The other member of the pair, viz., 1009-
0252B is also ejected by the same process, viz., the ‘sling-shot’ mechanism, and is
receding from us exhibiting the redshifted spectra.

7. Concluding remarks

Possibility of blueshifts in extragalactic spectra has been ignored in modern line
identification programmes. On the other hand, advances in modern observational
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technology are making new discoveries, which, at least in some cases, cannot be
explained and interpreted by the traditional redshift process. Occurrence of close pairs
of QSOs is one such phenomenon, which appears to lack satisfactory explanations,
although serious attempts have been made to explain it in terms of gravitational lensing
of a single object. In this paper, we have studied one such pair, viz., 1009-0252A, B
and have demonstrated that the spectrum of one of the objects in the pair can be inter-
preted in terms of blueshifts. Based on our analysis, we suggest that the pair consists of
two separate objects originated by the ejection mechanism resulting from the merger
of two galaxies. The third component, viz., C, of the triple system 1009-0252A, B, C
is an unrelated object in the field.

Finally, it should be noted that the blueshift does not contradict the redshift but
complements it, since only a fraction of extragalactic objects, not all, are probably
exhibiting blueshifted spectra. We recommend that unusual cases, which appears diffi-
cult to be explained when spectra are interpreted in terms of redshifts, should be
particularly looked for the alternative blueshift interpretation.
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Abstract. This paper provides a method for judging growth or decay of
the magnetic field of pulsar by using pulse period P , or frequency ν, and
its first and second derivatives Ṗ , P̈ or ν̇, ν̈. The author uses this method to
judge the growth or decay of the magnetic field of Crab pulsar. The judged
result for Crab pulsar is that the magnetic field of Crab pulsar is growing
now, but it is not decaying. The result corresponds with the actual case of
Crab pulsar.

Key words. Pulsar—decay or growth of magnetic field—method of
judgement.

1. Introduction

Usually the magnetic field of pulsars decay with time. Such is the case for a lot of
pulsars, but the magnetic field for a distinct pulsar is growing. The young pulsar
is possibly such a case when it is born. Afterward its magnetic field is decaying
successively. When it arrive at old pulsar, its magnetic field is not decaying or nearly
without variation or become a weak field. The magnetic field of Crab pulsar should be
growing due to young pulsar. This point corresponds with the result for the research
of some authors (Blandford & Romaru 1988; Lyne 2004). Lyne (2004) gave a formula
for judging increase or decrease of the magnetic field of pulsar by using the braking
index, and concluded that the magnetic field of Crab pulsar is increasing. The present
paper provides a method for judging the decay or growth of the magnetic field of
pulsar by using the observable data of the frequency or period and its first and second
derivatives, and checked the result given by Lyne for the increase of the magnetic field
of Crab pulsar.

2. The formulas for judging decay or growth of magnetic field of pulsar

We adopt the magnetic dipole model of pulsar to research this problem. We assume that
the magnetic field can be decaying or growing as in the following exponential form:

B2
p = B2

i exp(±ξ t). (1)

where Bp is the magnetic field at magnetic pole of pulsar and Bi is the field strength
at t = 0. ξ is the coefficient of the magnetic decay or growth. If ξ is positive, the
magnetic field of pulsar is growing; if it is negative, the magnetic field is decaying.
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The pulsar radiating energy at a rate can be written from the magnetic dipole model
(Shapiro & Teukolsky 1983):

Ė = −2|m̈|2
3c3

= −B2
pR6�4 sin2 α

6c3
. (2)

The energy carried away by the radiation from the rotational energy of pulsar is

E = 1

2
I�2, Ė = I��̇. (3)

2.1 The situation for the inclination without variation

The equation of the magnetic dipole radiation of pulsar can be derived from the
formulas (2)–(3) assuming the magnetic inclination α = const.

�̇ = −B2
pR6�3 sin2 α

6c3I
, (4)

where R, I and � denote radius, moment inertia and angular velocity of pulsar
respectively.

Let � = 2π/P (P : pulse period). Inserting it into the equation (4), we get

B2
p = 3c3I

2π2R6 sin2 α
P Ṗ . (5)

Differentiating equation (5) with respect to time, we get

dB2
p

dt
= 3c3I

2π2R6 sin2 α
(Ṗ 2 + P P̈ ). (6)

where Ṗ = (dP/dt), P̈ = (d2P/dt2).
Combining equation (6) with equation (5) or the two-hand sides of the equation (6)

is divided by the two-hand sides of the equation (5), we get

1

B2
p

dB2
p

dt
= Ṗ

P
+ P̈

Ṗ
. (7)

Let ν be the pulsar frequency,

ν̇ = dν

dt
, ν̈ = d2ν

dt2
,

P = 1

ν
, Ṗ = d

dt

(
1

ν

)
= −ν̇

ν2
, P̈ = d

dt

(−ν̇

ν2

)
= 2ν̇2

ν3
− ν̈

ν2
. (8)

Substituting the expressions (8) into the equation (7), we obtain the formula (9)

1

B2
p

dB2
p

dt
= ν̈

ν̇
− 3

ν̇

ν
. (9)
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We substitute the formula (1) into the formulas (7) and (9), we obtain

±ξ = Ṗ

P
+ P̈

Ṗ
= ν̈

ν̇
− 3ν̇

ν
. (10)

The formula (10) is a formula for judging growth or decay of magnetic field of pulsar.
If ξ is positive, the magnetic field of pulsar is growing; if it is negative, the magnetic
field is decaying.

2.2 The situation for the inclination with variation

We research that the pulsar inclination α varies with time for the situation of the
formula (10).

Differentiating the formula (5) with respect to time, we get

dB2
P

dt
= 3c3I

2π2R6 sin2 α
(Ṗ 2 + P P̈ ) − 3c3

π2R6
(IPṖ ) cot α csc2 α

dα

dt
. (11)

For giving the expression for dα/dt , we use the formula (Davis & Goldstein 1970)

I
d(� cos α)

dt
= − �N ·

�M
M

= 0,

where M is the magnetic moment, N is the magnetic torque.
Let � = 2π/P , and inserting it into the above formula, and then differentiating it,

we get

dα

dt
= − Ṗ

P
cot α. (12)

Substituting the expression (12) into the expression (11), then

dB2
p

dt
= 3c3I

2π2R6 sin2 α
(Ṗ 2 + P P̈ ) + 3c3I

π2R6
Ṗ 2 cot2 α csc2 α. (13)

when the two-hand sides of the equation (13) is divided by the two-hand sides of
equation (5), we get

1

B2
p

dB2
p

dt
= Ṗ

P
+ P̈

Ṗ
+ 2 cot2 α

(
Ṗ

P

)
= (1 + 2 cot2 α)

Ṗ

P
+ P̈

Ṗ
. (14)

Substituting the expressions (8) into the above formula, we get

1

B2
p

dB2
p

dt
= ν̈

ν̇
− (3 + 2 cot2 α)

ν̇

ν
. (15)

Substituting the formula (1) into the left side for the formulas (14) and (15), we get

±ξ = (1 + 2 cot2 α)
Ṗ

P
+ P̈

Ṗ
= ν̈

ν̇
− (3 + 2 cot2 α)

ν̇

ν
. (16)

The formulas (10) and (16) are the formulas for judging the growth or decay of the
magnetic field of pulsar.
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3. Application to crab pulsar

We use the formulas (10) and (16) to judge the growth or decay of the magnetic field
of Crab pulsar. We use the following data to judge it.

The data for the first set (Bonazzola & Schneider 1974) are:

ν = 30.2137051 HZ

ν̇ = −0.38594 × 10−9 HZs−1

ν̈ = 1.1 × 10−20 HZs−2

⎫
⎪⎬

⎪⎭
. (17)

The data for the second set (Wang et al. 2001) are:

ν = 29.836059670 HZ

ν̇ = −3.743460(3) × 10−10 HZs−1

ν̈ = 1.17(2) × 10−20 HZs−2

⎫
⎪⎬

⎪⎭
. (18)

The data for the third set (ATNF pulsar catalogue) are:

ν = 30.225 HZ

ν̇ = −3.86 × 10−10 HZs−1

ν̈ = 1.240 × 10−20 HZs−2

⎫
⎪⎬

⎪⎭
. (19)

Substituting the data for the first set into the formula (10), we get

±ξ = ν̈

ν̇
− 3ν̇

ν
= +0.098191804 × 10−10 > 0,

so ξ should be taken as positive.
Substituting the data for the second set into the formula (10), we get

±ξ = ν̈

ν̇
− 3ν̇

ν
= +0.063323602 × 10−10 > 0,

so ξ should be taken as positive.
Substituting the data for the third set into the formula (10), we get

±ξ = ν̈

ν̇
− 3ν̇

ν
= +0.061883027 × 10−10 > 0,

so ξ should be taken as positive.
If we consider the magnetic inclination, α, we need to use formula (16) for the

calculation.
We consider: 0◦ ≤ α ≤ 90◦, then +∞ ≤ cot α ≤ 0. So when 0◦ ≤ α ≤ 90◦, and

ν̇ < 0 (negative), substituting the data of three sets into the formula (16), we still
obtain ξ > 0 (positive). Hence the magnetic field of Crab pulsar is still growing.

If we consider: 90◦ ≤ α ≤ 180◦, and then 0 ≤ cot α ≤ −∞, we get

(3 + 2 cot2 α)
ν̇

ν
≤ 3

ν̇

ν
.
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Substituting the data of three sets into the formula (16), because ν̇ < 0, we get ξ < 0
(negative).

So the magnetic field of Crab pulsar is decaying, only when its inclination is that of
90◦ ≤ α ≤ 180◦. But for Crab pulsar its magnetic inclination α is (Davis & Goldstein
1970)

α = 59◦.2.

So 0◦ ≤ α ≤ 90◦, and ξ > 0 (positive). It is not negative. Hence when we consider
magnetic inclination, α, the magnetic field of Crab pulsar is still growing with time.

Next we calculate the increase of magnetic field with time for the Crab pulsar.
We take the average value of three sets for ξ in the expressions (17)–(19), we get

ξ = 0.0744682 × 10−10(c, g, s). (20)

We use the present strength of the magnetic field of Crab pulsar B0 = 5.2 × 1012G

(sin α = 1) (Shapiro & Teukolsky 1983). Substituting the values for ξ and B0 into the
formula (1) and taking ξ as the positive symbol, we get

Bp(t) = 5.2006 × 1012G,

∴ �Bp(t) = Bp(t) − Bp(0) = (5.2006 − 5.2000) × 1012

= +0.0006 × 1012 G/yr. (21)

i.e., the magnetic filed is increasing (growing). The increment is 6 × 108 G per year
for Crab pulsar.

4. Discussion

(1) The formula given by Lyne and the correction for the formula,
Lyne (2004) derived a formula for judging the increase or decrease of the magnetic
field of pulsar. He uses the magnetic dipole model

B = −
√

3c3I

8π2R6 sin2 a
P Ṗ = 3.2 × 1019

√
P Ṗ Gauss, (22)

P = 1

ν
, n = νν̄/ν̇2, τ = P

2Ṗ
. (23)

And then, he obtained from the expressions (22) and (23)

dB

dt
= B

τ
{3 − n}. (24)

He infers from the above formula that the magnetic field is increasing, if n < 3
and the magnetic field is decreasing, if n > 3.

The formula (24) needs to be corrected.
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Differentiating the equation (22), we obtain

dB

dt
= B

2

{
Ṗ

P
+ P̈

Ṗ

}
or

dB

dt
=
{

ν̈

ν̇
− 3

ν̇

ν

}
. (25)

We use

n = νν̈

ν̇2
= 2 − P P̈

Ṗ 2
. (26)

In the above two equations, the equation (25) can be written as

dB

dt
= B

2

Ṗ

P
{3 − n} = B

4τ
{3 − n}. (27)

This is the corrective formula for the formula (24) given by Lyne.
(2) This paper supports and has checked the result given by Lyne for the increase of

the magnetic field of Crab pulsar.
It can be checked that the growth of the magnetic field of Crab pulsar can be

used for the observable data of three sets (ν, ν̇, ν̈} provided by this paper.
Substitution of data of three sets (17)–(19) into the formula of the braking index

(23) or (26), we get

n = 2.2313, n = 2.4948, n = 2.5154. (28)

So, n ≺ 3. Based on the formula (24) given by Lyne, the magnetic field of Crab
pulsar is increasing by using the above three data of braking index. Hence this
paper supports and has checked the result given by Lyne provided in this paper.

(3) The comparison of methods of this paper with Lyne’s paper is given below:
Both papers start from and are based on the magnetic dipole model of pulsar,

but the methods of derivation are different. The author uses the observational data
for periods P, Ṗ , P̈ or frequencies ν, ν̇, ν̈ to judge the decay or growth of the
magnetic field of pulsar. Lyne uses the braking index, n, to judge the increase or
decrease of the magnetic field of pulsar. In addition, the results given by this paper
consider the variation of the magnetic inclination with time. The results given by
Lyne only consider the magnetic inclination as a constant.

5. Conclusion

(1) The magnetic field of a pulsar is denoted by

B2 = B2
i exp(±ξ t).

It is a decaying or a growing field, which is judged by the following formulas

±ξ = Ṗ

P
+ P̈

Ṗ
= ν̈

ν̇
− 3ν̇

ν

or

±ξ = (1 + 2 cot2 α)
Ṗ

P
+ P̈

Ṗ
= ν̈

ν̇
− (3 + 2 cot2 α)

ν̇

ν
.



Decay or Growth of Magnetic Field of Pulsar 151

If the value for ξ > 0, i.e., ξ is positive, then

B2 = B2
i exp(+ξ t).

The magnetic field is a growing field.
If the value for ξ < 0, i.e., ξ is negative, then

B2 = B2
i exp(−ξ t).

The magnetic field is a decaying field.
If the value ξ = 0 or ξ → 0, the magnetic field

B2 = B2
i or B2 → B2

i ,

i.e., the magnetic field is an invariable field or the field is a very weak field.
(2) The value of ξ suggests the evolutionary significance. When ξ > 0, the magnetic

field is a growing field. This belongs to the situation for young pulsar. When
ξ < 0, the magnetic field is a decaying field. This belongs to a pulsar between
the young and old age. When ξ = 0 or ξ → 0, the magnetic field is an invariable
field or a weak field. This belongs to the situation for an old pulsar.

(3) We infer that the magnetic field of Crab pulsar is growing with time because the
value of ξ is positive. The conclusion corresponds with the results of the research
of the authors Blandford & Romaru (1988) and Lyne (2004).
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Abstract. Using measured radial velocity data of five double lined
spectroscopic binary systems V380 Cygni, V401 Cyg, V523 Cas, V373 Cas
and V2388 Oph, we find corresponding orbital and spectroscopic elements
via the method introduced by Karami & Mohebi (2007) and Karami &
Teimoorinia (2007). Our numerical results are in good agreement with
those obtained by others using more traditional methods.

Key words. Stars: binaries: eclipsing—stars: binaries: spectroscopic.

Determining the orbital elements of binary stars helps us to obtain the necessary
information such as the mass and the radius of stars which play important roles in the
evolution of the stellar structures. Analyzing both the light and the radial velocity curves
deducing from the photometric and the spectroscopic observations, respectively, leads
to derivation of the orbital parameters. One of the usual methods to analyze the velocity
curve is the method of Lehmann-Filhés, see Smart (1990). Here we use the method
introduced by Karami & Mohebi (2007) and Karami & Teimoorinia (2007) (hereafter
KM2007 and KT2007) for obtaining the orbits of five double-lined spectroscopic
binary systems V380 Cygni, V401 Cyg, V523 Cas, V373 Cas and V2388 Oph.

V380 Cygni is a close detached binary with P = 12.425612 days. The spectral type
is B1.5II − III , B2V for the primary and secondary components, respectively. The
polar temperature of primary is 24,500 K and for secondary is 23,600 K. The angle of
inclination is 80.1 ± 0.7◦ (Hill & Batten 1984). The V401 Cyg appears to be a rather
typical contact system and is a double-lined spectroscopic binary. The orbital period is
0.582714 days (Rucinski et al. 2002a, b). V523 Cas is one of the faintest known contact
binaries. The spectral type is K4V and the period is P = 0.233693 days (Rucinski et al.
2003a, b). V373 Cas is known to be a double-lined spectroscopic binary. The primary
component is highly evolved and should be close to the Roche limiting surface of
periastron. The spectral type of the primary and secondary components is B0.5II and
B4III , respectively. The mean effective temperature is Te = 22,000 and 18,000 for
the primary and secondary components. The angle of inclination is ∼60◦ with a period
of 13.4 days. See Hill & Fisher (1987). V2388 Oph is very close visual binary and
has been the subject of many speckle interferometry investigations. The spectral type
is W UMa-type with a relatively long period of 0.802 days. The system appears to be
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one of the most luminous among currently known contact binaries. Orbital inclination
angle is 90◦ (Rucinski et al. 2002a, b).

This paper is organized as follows. In section 2, we give a brief review of the method
of KM2007 and KT2007. In section 3, the numerical results implemented for the five
different binary systems are reported. Section 4 is devoted to conclusions.

1. A brief review of the method of KM2007 and KT2007

The radial velocity of star in a binary system is defined as follows:

RV = Vcm + Ż, (1)

where Vcm is the radial velocity of the center of mass of system with respect to the
sun and

Ż = K[cos(θ + ω) + e cos ω], (2)

is the radial velocity of star with reference to the center of mass of the binary, see
Smart (1990). In equation (2), the dot denotes the time derivative and θ , ω and e

are the angular polar coordinate (true anomaly), the longitude of periastron and the
eccentricity, respectively. Note that the quantities θ and ω are measured from the
periastron point and the spectroscopic reference line (plane of sky), respectively.
Also,

K = 2π

P

a sin i√
1 − e2

, (3)

where P is the period of motion and inclination i is the angle between the line of sight
and the normal of the orbital plane.

Following KM2007 and KT2007, one may show that the radial acceleration scaled
by the period is obtained as:

P Z̈ = −2πK

(1 − e2)3/2
sin

(
cos−1

(
Ż

K
− e cos ω

))

×
{

1 + e cos

(
−ω + cos−1

(
Ż

K
− e cos ω

))}2

. (4)

Equation (4) describes a nonlinear relation, P Z̈ = P Z̈(Ż, K, e, ω), in terms of the
orbital elements K , e and ω. Using the nonlinear regression of equation (4), one can
estimate the parameters K, e and ω, simultaneously. Also one may show that the
adopted spectroscopic elements, i.e., mp/ms , mp sin3 i and ms sin3 i, are related to the
orbital parameters. See KM2007 and KT2007.

2. Numerical results

Here we use the method of KM2007 and KT2007 to derive both the orbital and com-
bined elements for the five different double lined spectroscopic systems V380 Cygni,
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Figure 1. Radial velocities of the primary and secondary components of V380 Cygni plotted
against the photometric phase. The observational data belong to Hill & Batten (1984).

Figure 2. Same as Fig. 1, but for V401 Cyg. The observational data have been derived from
Rucinski et al. (2002a, b).

V401 Cyg, V523 Cas, V373 Cas and V2388 Oph. Using the measured experimental
data for radial velocities of the two components of these systems obtained by Hill &
Batten (1984) for V380 Cygni, Rucinski et al. (2002a, b) for V401 Cyg and V2388
Oph, Hill & Fisher (1987) for V373 Cas and Rucinski et al. (2003a, b) for V523 Cas,
the fitted velocity curves are plotted in terms of the photometric phase in Figs. 1–5.

Figures 6–15 show the radial acceleration scaled by the period versus the radial
velocity for the primary and secondary components of V380 Cygni, V401 Cyg, V523
Cas, V373 Cas and V2388 Oph, respectively. The solid closed curves are the results
of the nonlinear regression of equation (4), which their good coincidence with the
measured data yields to derive the optimized parameters K , e and ω. Figures show
that also for V401 Cyg, V523 Cas, and V2388 Oph due to having small eccentricities,
their radial velocity-acceleration curves display an elliptical shape, while, in contrast
for the eccentric systems V380 Cygni and V373 Cas, the acceleration-velocity curve
shows some deviation from an ellipse (see Karami & Mohebi 2007).
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Figure 3. Same as Fig. 1, but for V523 Cas. The observational data belong to Rucinski et al.
(2003a, b).

Figure 4. Same as Fig. 1, but for V373 Cas. The observational data belong to Hill & Fisher
(1987).

Figure 5. Same as Fig. 1, but for V2388 Oph. The observational data belong to Rucinski et al.
(2002a, b).
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Figure 6. The radial acceleration scaled by the period versus the radial velocity of the primary
component of V380 Cyg. The solid curve is obtained from the nonlinear regression of equation
(14). The plus points are the experimental data.

Figure 7. Same as Fig. 6, but for the secondary component of V380 Cyg.

Figure 8. Same as Fig. 6, but for the primary component of V401 Cyg.
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Figure 9. Same as Fig. 6, but for the secondary component of V401 Cyg.

Figure 10. Same as Fig. 6, but for the primary component of V523 Cas.

Figure 11. Same as Fig. 6, but for the secondary component of V523 Cas.
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Figure 12. Same as Fig. 6, but for the primary component of V373 Cas.

Figure 13. Same as Fig. 6, but for the secondary component of V373 Cas.

Figure 14. Same as Fig. 6, but for the primary component of V2388 Oph.
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Figure 15. Same as Fig. 6, but for the secondary component of V2388 Oph.

Table 1. Spectroscopic and combined orbit of V380 Cygni.

Hill & Batten
This paper Batten (1960) (1984)

Primary

Vcm(km s−1) −2.85 ± 0.23 −2.9 ± 0.8 −0.7 ± 0.7

Kp(km s−1) 93.68 ± 0.12 93.4 ± 1.2 92.3 ± 1.1
e 0.204 ± 0.002 0.229 ± 0.013 0.22 ± 0.01
ω(◦) 129.7 ± 0.7 128 ± 3.1 127.6 ± 2.8
Secondary

Vcm(km s−1) −2.85 ± 0.23 2.5 ± 6.1 −18 ± 4.7

Ks(km s−1) 162.82 ± 0.28 161.6 ± 7 168 ± 5.3
e es = ep 0.23 0.22
ω(◦) 276.37 ± 0.33 128.0 (fixed) 127.6 (fixed)

mp sin3 i/M� 12.94 ± 0.08 12.4 ± 0.3 12.4 ± 0.3

ms sin3 i/M� 7.44 ± 0.04 7.2 ± 0.2 7.1 ± 0.2
(ap + as) sin i/R� 61.64 ± 0.12 60.9 ± 1.7 60.7 ± 2
mp/ms 1.74 ± 0.01 1.72 ± 0.05 1.73 ± 0.06

The orbital parameters, K , e and ω, resulting from the nonlinear least squares of
equation (4) for V380 Cygni, V401 Cyg, V523 Cas, V373 Cas and V2388 Oph,
are tabulated in Tables 1, 2, 3, 4 and 5, respectively. The velocity of the center of
mass, Vcm, is obtained by calculating the areas above and below the radial velocity
curve. Where these areas become equal to each other, then the velocity of center
of mass is obtained. Tables 1–5 show that the results are in good agreement with
those obtained by Hill & Batten (1984) for V380 Cygni, Rucinski et al. (2002a, b)
for V401 Cyg and V2388 Oph, Rucinski et al. (2003a, b) for V523 Cas and Hill &
Fisher (1987) for V373 Cas. Note that in Table 1, the absolute value of Vcm of V380
Cygni in this paper is not in concord with the result obtained by Hill & Batten
(1984) but it is in good agreement with the result of Batten (1960). In a binary
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Table 2. Same as Table 1, but for V401 Cyg.

Rucinski et al.
This paper (2002a, b)

Primary

Vcm(km s−1) 27.24 ± 0.15 25.53(2.14)

Kp(km s−1) 68.46 ± 0.02 72.23(2.43)

e ep = es –
ω(◦) wp = ws + 180◦ –
Secondary

Vcm(km s−1) 27.24 ± 0.15 25.53(2.14)

Ks(km s−1) 247.99 ± 0.02 249.13(4.53)

e 0.0046 ± 0.0001 –
ω(◦) 180.65 ± 5.21 –

mp sin3 i/M� 1.4993 ± 0.0005 –

ms sin3 i/M� 0.4139 ± 0.0002 –
(ap + as) sin i/R� 3.643 ± 0.001 –
mp/ms 0.276 ± 0.001 0.290(11)

(mp + ms) sin3 i/M� 1.9132 ± 0.0008 2.008(130)

Table 3. Same as Table 1, but for V523 Cas.

Rucinski et al.
This paper (2003a, b)

Primary

Vcm(km s−1) −2.31 ± 0.71 −2.54(0.90)

Kp(km s−1) 236.22 ± 0.04 235.95(1.41)

e 0.0012 ± 0.0002 –
ω(◦) 189.65 ± 10.61 –
Secondary

Vcm(km s−1) −2.31 ± 0.71 −2.54(0.90)

Ks(km s−1) 122.38 ± 0.02 121.64(1.14)

e es = ep –
ω(◦) ws = wp − 180◦ –

mp sin3 i/M� 0.381 ± 0.002 –

ms sin3 i/M� 0.7355 ± 0.0004 –
(ap + as) sin i/R� 1.6557 ± 0.0003 –
mp/ms 0.5181 ± 0.0002 0.516(7)

(mp + ms) sin3 i/M� 1.117 ± 0.001 1.11(24)

system, the Vcm of the two components should be the same. In Table 1, there is
another difference which is related to ωs . Since we did not fix it, the method derives it
freely.
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Table 4. Same as Table 1, but for V373 Cas.

Hill & Fisher
This paper (1987)

Primary

Vcm(km s−1) −25.14 ± 0.76 −24.5 ± 2

Kp(km s−1) 109.52 ± 0.22 106.7 ± 2.7
e ep = es –
ω(◦) wp = ws + 180◦ –
Secondary

Vcm(km s−1) −25.14 ± 0.76 –

Ks(km s−1) 145.53 ± 0.02 –
e 0.0972 ± 0.0002 –
ω(◦) 164.54 ± 0.27 –

mp sin3 i/M� 12.98 ± 0.03 12.6 ± 0.2

ms sin3 i/M� 9.77 ± 0.04 9.3 ± 0.2
(ap + as) sin i/R� 67.305 ± 0.064 66.1 ± 0.9
mp/ms 1.33 ± 0.03 1.35 ± 0.04

Table 5. Same as Table 1, but for V2388 Oph.

Rucinski et al.
This paper (2002a, b)

Primary

Vcm(km s−1) −25.35 ± 0.88 −25.88(0.52)

Kp(km s−1) 44.71 ± 0.01 44.62(0.48)

e 0.006 ± 0.001 –
ω(◦) 275.62 ± 2.09 –
Secondary

Vcm(km s−1) −25.35 ± 0.88 −25.88(0.52)

Ks(km s−1) 241.99 ± 0.03 240.22(0.98)

e es = ep –
ω(◦) ws = wp − 180◦ –

mp sin3 i/M� 1.653 ± 0.001 –

ms sin3 i/M� 0.3055 ± 0.0001 –
(ap + as) sin i/R� 4.545 ± 0.001 –
mp/ms 0.184 ± 0.001 0.186(2)

(mp + ms) sin3 i/M� 1.959 ± 0.001 1.926(30)

The combined spectroscopic elements including mp sin3 i, ms sin3 i, (ap + as) sin i

and mp/ms obtaining from the estimated parameters K , e and ω for the five systems are
tabulated in Tables 1, 2, 3, 4 and 5 and show that our results are in good agreement with
the those obtained by Hill & Batten (1984) for V380 Cygni, Rucinski et al. (2002a, b)
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for V401 Cyg and V2388 Oph, Rucinski et al. (2003a, b) for V523 Cas and Hill &
Fisher (1987) for V373 Cas, respectively.

3. Conclusions

Using the measured experimental data for radial velocities of V380 Cygni, V401 Cyg,
V523 Cas, V373 Cas and V2388 Oph obtained by Hill & Batten (1984), Rucinski
et al. (2002a, b), Rucinski et al. (2003a, b) and Hill & Fisher (1987) respectively, we
find the orbital elements of these systems by the method of KM2007 and KT2007. Our
numerical calculations show that the results obtained for both the orbital elements and
the combined spectroscopic parameters are in good agreement with the those obtained
by others using more traditional methods. In a subsequent paper we intend to study
the other different systems.
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Abstract. The rapid neutron capture process (r-process) is one of the
major nucleosynthesis processes responsible for the synthesis of heavy
nuclei beyond iron. Isotopes beyond Fe are most exclusively formed in
neutron capture processes and more heavier ones are produced by the
r-process. Approximately half of the heavy elements with mass number
A � 70 and all of the actinides in the solar system are believed to have been
produced in the r-process. We have studied the r-process in supernovae for
the production of heavy elements beyond A = 40 with the newest mass
values available. The supernova envelopes at a temperature �109 K and
neutron density of 1024 cm−3 are considered to be one of the most potential
sites for the r-process. The primary goal of the r-process calculations is to
fit the global abundance curve for solar system r-process isotopes by vary-
ing time dependent parameters such as temperature and neutron density.
This method aims at comparing the calculated abundances of the stable
isotopes with observation. We have studied the r-process path correspond-
ing to temperatures ranging from 1.0 × 109 K to 3.0 × 109 K and neutron
density ranging from 1020 cm−3 to 1030 cm−3. With temperature and den-
sity conditions of 3.0 × 109 K and 1020 cm−3 a nucleus of mass 273 was
theoretically found corresponding to atomic number 115. The elements
obtained along the r-process path are compared with the observed data at
all the above temperature and density range.

Key words. Supernova—nucleosynthesis—abundance—r-process.

1. Introduction

Burbidge et al. (1957), in their seminal paper, outlined the rapid neutron capture
process in the supernova envelope at a high neutron density and a temperature of 109

degrees. According to them, this mode of synthesis is responsible for the produc-
tion of a large number of isotopes in the range 70 ≤ A ≤ 209, and also for synthe-
sis of uranium and thorium. This would explain the abundances of the neutron rich
nuclei in the periodic table. Major advances have been made in calculating r-process
nucleosynthesis in supernovae (Woosley et al. 1992) and in using a wide range of
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model parameters to obtain yields that approximate the solar r-process abundances
(Kratz et al. 1993). Studies of galactic chemical evolution (Mathews & Cowan 1992)
show that the enrichment of the r-process elements in the galaxy is consistent with low
mass type II supernovae being the r-process sites. In the usual picture the r-process
stops when the neutron supply ceases (freeze-out). The produced very neutron rich
progenitor nuclei then undergo a series of β-decays until they reach a stable nucleus
whose calculated abundance can then be compared with observation. It was recog-
nised that the extremely high neutron densities and temperatures needed were probably
attainable only in dynamical events, i.e., supernovae.

The essential feature of the r-process is that a large flux of neutrons becomes avail-
able in a short time interval for addition to elements of the iron group, or perhaps, in
cases where the abundances in the iron group are abnormally small, for addition to light
nuclei such as Ne22. So we started our analysis with A = 40 and obtained the abun-
dances beyond that. We have summarised our calculations within a site-independent,
classical approach based on neutron number density nn and temperature T9, defin-
ing the neutron binding (separation) energy Qn of the path, where the waiting point
approximation, i.e., (n, γ ) ↔ (γ, n) equilibrium could be applied. The dependence
on nuclear masses enters via Qn.

We choose supernova as the site for r-process because the supernova light curves
show the presence of 98Cf254. We have considered the r-process in supernovae for
the production of heavy elements, under extreme conditions of temperature and den-
sity. For our purpose, the most interesting evolution occurs as the temperature falls
from 1010 K to 109 K. Beginning at about 1010 K, nuclear statistical equilibrium (NSE)
favours the assemblage of nucleons into α-particles and heavy nuclei. As the tem-
perature drops below about 5.0 × 109 K, the reactions responsible for converting
α-particles back into heavy nuclei begin to fall out of equilibrium. By 3.0 × 109 K,
the charged particle reactions freeze out. Below this temperature, the r-process occurs
until the temperature reaches (1–2) × 109 K, where the neutron reactions also cease
as the neutrons are depleted (Woosley et al. 1994). Using new mass tables of Audi
et al. (2003) we have calculated the average excess neutron binding energy to nuclei
with neutron number which is then used in the calculation of neutron capture chain.
We start with a temperature of 1.0 × 109 K and neutron number density of 1020 cm−3

as these are the conditions prevailing in supernova envelopes during the eventually
expanding stages. In our present paper, we emphasize only on the r-process path to
obtain the elements in our astrophysical conditions considered and consequent build-
up to heavier nuclei. In our next paper, we propose to present the abundances of these
elements along the path.

2. Source of neutron flux

For the r-process nucleosynthesis in supernovae, the existence of enormous neutron
flux is necessitated. Normal stellar matter has a neutron/proton ratio near unity making
it virtually impossible to free sufficient neutrons relative to seed nuclei. Reactions such
as 13C(α, n)16O can produce free neutrons in red giants, but the number of these free
neutrons is also small. It is possible to circumvent this problem by having the only
charged particles accompanying the neutrons be alphas. Single alpha particles do not
capture neutrons. It is proposed that (Schramm 1973) at high temperatures associated
with the collapse of massive iron core in type II supernovae, iron will photo-dissociate
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into alphas and neutrons as:

56Fe → 13α + 4n.

As the material expands and cools from these photo-dissociation conditions, the
alphas recombine again to produce heavy iron peak nuclei. However, these recombina-
tion is hampered by the fact that alphas only systhesize heavy elements via three-body
interactions. Thus there will be a time during which a few iron peak seed nuclei have
been produced in a sea of alphas and neutrons. The ratio of neutrons to seed will be
large, so that an r-process can take place.

Another set of conditions where large number of free neutrons exist is when
the temperature and density get sufficiently high that the reaction p + e− → n + νe

dominates over n + e+ → p + ν̄e (Arnett 1979). Thus neutronisation refers to elec-
tron capture driven by high electron Fermi energy (i.e., high density). Subsequently,
p + e− → n + νe at high density. Moreover, nuclei resist electron capture because of
the large threshold energies required as they become more neutron rich. Also electron
capture on free protons is limited by the small abundance of free protons. These prob-
lems are eased by higher density and higher temperature, so neutronization speeds up
as collapse continues. Once collapse begins, neutronization becomes the dominant
mode of neutrino productions, overwhelming thermal processes.

According to Mukhopadhyay (2007), the neutrino–antinutrino oscillation under
gravity explains the source of abnormally large neutron abundance to support the
r-process nucleosynthesis in astrophysical site, e.g., supernova. He also proposed two
related reactions

n + νe → p + e−; p + ν̄e → n + e+

as given by Arnett (1979). If ν̄e is over-abundant than νe, then, from this expression,
neutron production is expected to be more than proton production into the system.
Therefore, the possible conversion of ν to ν̄e due to gravity induced oscillation explains
the over-abundance of neutron.

In the build-up of nuclei by the r-process, the reactions which govern both the rate of
flow and the track followed in the (A, Z) plane are the (n, γ ) and (γ , n) reactions, beta
decay and at the end of the track the neutron induced fission. The timescale τn for a
heavy nucleus to capture an additional neutron is rapid on the competing timescale τβ

for it to undergo beta decay. Whereas τβ depends only on nuclear species, τn depends
critically on the ambient neutron flux.

λn > λβ(τn < τβ). (1)

In rapid process, a sufficient flux of neutrons makes τn much shorter than τβ . Then
neutron capture will proceed into the very neutron rich and unstable regions far from
the valley of beta stability. Once the neutron flux is exhausted, the unstable nuclei
produced by the r-process will beta decay to the valley of stability to form the stable
r-process elements.

3. Nuclear physics considerations and the r-process path

To illustrate the significant differences of the astrophysical conditions during
the r-processing, we refer to the classical quantity, namely, the neutron binding
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(separation Sn) energy Qn, that represents the r-process path in the chart of nuclides
once the specific values of neutron density nn and the temperature T are assigned.
The Qn values vary in time as well as in space along with the dynamical evolution of
our astrophysical environment.

3.1 Dynamical evolution of the neutrino heating phase in type-II supernovae

We first summarize the type-II supernova explosion scenario according to the current
understanding. We emphasize some characteristic features on the hydrodynamical
evolution of the neutrino wind phase. During the final stages of the evolution of a
massive (8 ∼25 M�) star, an ‘iron’ core forms in its central region and subsequently
undergoes gravitational collapse. When the central density reaches nuclear matter
density, the collapse stops abruptly to cause a ‘core bounce’. A hydrodynamical shock
wave is created and starts to propagate outward. According to calculations (Bruenn
1989a), this shock wave loses its entire kinetic energy within a few milliseconds to
stall well inside the outer edge of the initial iron core, and no immediate disruption (the
‘prompt’ expolsion) of the star occurs. On a timescale from several tens of milliseconds
to about half a second, the neutrinos streaming out from the new born neutron star can
deposit energy behind the standing accretion shock at high enough a rate to revive its
outward motion and initiate the final explosion of the star. This is the neutrino-driven
‘delayed’ explosion mechanism originally suggested by Wilson et al. (1986).

The neutron star releases its gravitational binding energy of several 1053 erg in the
form of neutrino radiation. A region of net energy deposition by neutrinos (‘neutrino
heating’) naturally emerges at the periphery of the neutron star because of the decrease
of temperature with increasing radius. The energy is transferred to the stellar gas
predominently by absorption of electron neutrinos (νe) on neutrons and electron anti-
neutrinos (ν̄e) on protons. About one percent of the neutron star’s binding energy is
sufficient to drive a powerful shock into the overlaying stellar mantle. Behind the
shock, an extended and rapidly expanding region of low density and relatively high
temperature develops and is further energized by neutrino heating.

Janka (1993) performed hydrodynamical simulations of the formation and evolu-
tion of the neutrino-wind phase of a type II supernova with a proper description
of the neutrino physics and an adequate representation of the equation of state.
The hydrodynamical investigations were carried on from an initial configuration
made available by Wilson. From Wilson’s post-collapse model the radial profiles of
density, temperature, electron concentration, composition and velocity were taken
to specify the initial conditions for the set of partial differential equations, which
was integrated in time to follow the gas composition and the evolution of the fluid
flow in spherical symmetry. The equation of state for the stellar gas contained the
contributions from nucleus, α-particles, and a representative typical heavy nucleus in
nuclear statistical equilibrium. The model evolved under the influence of the neutrino
fluxes from the protoneutron star at the center. Since all hydrodynamical and thermo-
dynamical quantities were determined from the numerically solved set of equations,
the effects of the particular choice of the initial model configuration were not cru-
cial and became even less relevant as time went on. The most important parameter
of the input model to influence the simulated evolution was the mass of the central
neutron star (Witti et al. 1994). However, the hydrodynamical evolution in the range
of temperatures below T9 = 2 is not very fast (Takahashi et al. 1994).



Neutron Capture and Chemical Elements 169

3.2 The r-process network and the waiting-point approximation

Supernova is a dynamical event. When a constant Sn (nn and T ) is assumed over a
duration time τ , then the nuclei will still be existent in the form of highly unstable
isotopes, which have to decay back to β-stability. In reality nn and T will be time
dependent. As long as these are high enough to ensure the waiting point approximation,
the system will immediately adjust to the new equilibrium and only the new Sn (nn and
T ) is important. The abundance flow from each isotopic chain to the next is governed
by beta decays. The waiting point approximation is only valid for high temperatures
and neutron number densities of the gas. If not, the flow of nuclei towards higher
neutron number N for a given proton number Z is steadily depleted by beta decay.
As a result only a small fraction of the flow can easily reach a waiting point. Cameron
et al. (1983b) found that for temperatures of 2.0 × 109 K and higher, the waiting point
approximation was valid for neutron number densities as low as 1020 cm−3. For lower
temperature (T < 109 K) even with high values of nn ≈ 1025 cm−3, the waiting point
approximation is not valid. The r-process path requires a synthesis time of the order
of seconds to form the heaviest elements such as thorium, plutonium and uranium.

The r-process network includes radiative neutron capture, i.e., (n, γ ) reactions, the
inverse photo-disintegration, i.e., (γ , n) reactions, β-decay, i.e., (β, γ ) processes and
β-delayed neutron emission, i.e., (β, n) processes. If the neutron density is very high,
successive (n, γ ) reactions may produce very neutron rich isotopes out of the limited
α-process network in a ‘mini r-process’. The (n, γ ) and (γ , n) reactions are then
much faster than β-decays. Therefore, as soon as the ‘proper’ r-process is started, the
isotopic abundances, stuck at the most neutron-rich isotopes included in the α-process
network, will quickly be redistributed according to the (n, γ ) ↔ (γ, n) equilibrium
(Takahashi et al. 1994). In our model, the neutron number densities are so high that
an equilibrium between the (n, γ ) and (γ , n) reactions is quickly established.

In an (n, γ ) ↔ (γ, n) equilibrium (the waiting-point approximation), the maximum
abundances in isotopic chains occur at the same neutron separation energy, which is
determined by a combination of nn and T9 in an astrophysical environment. Connecting
the abundance maxima in isotopic chains defines the so called r-process path. The build-
up of heavy nuclei is governed by the abundance distribution in each isotopic chain
from (n, γ ) ↔ (γ, n) equilibrium and by effective decay rates λZ

β of isotopic chains.
After charged particle freeze-out, when only (n, γ ) ↔ (γ, n) equilibrium remain
in place, matter can progress to heavier nuclei via β-decays between isotopic chains,
which is modelled by the r-process network to follow further evolution (Freiburghaus
et al. 1999).

4. Calculation of the r-process path

A nucleus of fixed Z cannot add neutrons infinitely even in the presence of an intense
neutron flux. The binding energy of each successive neutron becomes progressively
weaker as more and more neutrons are added until ultimately the binding falls to zero,
which sets an upper limit to neutron addition at fixed Z. The nucleus then waits until
β-decay allows it to move onto the next nucleus. Thus in a rapid process two inverse
reactions n+ (Z, A) ↔ (Z, A+1)+γ come to an equilibrium. This balance governs
the equilibrium distribution of isotope abundances for a given Z. The maximum abun-
dance along an isotope chain is determined by the temperature and neutron density.
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Given that A/(A + 1) ≈ 1, the abundance maxima in each isotopic chain are deter-
mined by the neutron number density nn and temperature T . The maximum value of
the abundance occurs at neutron separation energy Sn which is same for all isotopic
chains irrespective of Z. Approximating abundances Y (Z, A + 1)/Y (Z, A) ≈ 1 at
the maximum and keeping all other quantities constant, the neutron separation energy
Sn has to be the same for the abundance maxima in all isotopic chains.

The condition for the dynamical equilibrium between (n, γ ) and (γ , n) reactions for
nucleus X(A, Z) is expressed as (Burbidge et al. 1957):

X(A, Z) + n ⇐⇒ X(A + 1, Z) + γ + Qn(A, Z), (2)

where Qn(A, Z) is the neutron binding (separation energy Sn) to the nucleus X(A, Z).
Writing n(A, Z) and nn for the number densities of the nuclei (A, Z) and neutrons
respectively, the statistical balance in this reaction is expressed by (Burbidge et al.
1957):

log(n(A + 1, Z)/n(A, Z)) = log nn − 34.07 − (3/2) log T9 + (5.04/T9)Qn (3)

T9 being temperature in units of 109 degrees.
Using the condition that in equilibrium, n(A + 1, Z) ≈ n(A, Z) we obtain Qn as:

Qn = (T9/5.04)(34.07 + (3/2) log T9 − log nn). (4)

A rough estimate of Qn values that are preferred for explaining the r-process abun-
dance curve can be gained by taking into account the correlation between the r-process
abundance peaks and the neutron magic numbers. The prominent peaks at A ≈ 130
and A ≈ 195 are correlated with the nuclear shell effects of their precursor nuclei near
the neutron magic numbers 82 and 126 respectively. With the aid of nuclear mass for-
mula, one finds from the abundance peaks that the Qn value is most likely somewhere
in between 2 and 4 MeV. To attain this, we take the temperature and density conditions
considered here to range from

T = 1.0 × 109 K to 3.0 × 109 K and nn = 1020 cm−3 to 1030 cm−3.

The variation of Qn values with temperature and neutron number densities is shown
in Table 1.

We then tried to outline a method of calculation of r-process abundances which may
eventually be capable of yielding a theoretical abundance curve on the basis of nuclear
data alone. First, we consider the determination of Qn(A, Z) on the basis of smooth
Weizsacker atomic mass formula given by equation (5) neglecting shell, pairing and
quadrupole deformation effects:

Mw(A, Z) = (A − Z)Mn + ZMp − (1/c2)[αA − β(A − 2Z)2/A

− γA2/3 − εZ(Z − 1)/A1/3], (5)

where Mn and Mp are masses of the neutron and proton and α, β, γ and ε are constants
in energy units, which represent volume, isotopic, surface and coulomb energy para-
meters respectively, the values being taken from Burbidge et al. (1957). With these we
modify the expression for M(A, Z) as:

M(A, Z) = Mw(A, Z) − (1/c2)[f (N) + g(Z)], (6)
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Table 1. Variation of Qn values with temperature and density.

T9(K) nn(cm−3) Qn(Mev) T9(K) nn(cm−3) Qn(Mev)

1.0 1020 2.79 1.0 1022 2.39
1.2 1020 3.37 1.2 1022 2.90
1.4 1020 3.96 1.4 1022 3.41
1.6 1022 4.56 1.6 1022 3.93
1.0 1024 1.99 1.8 1022 4.45
1.2 1024 2.41 1.2 1026 1.95
1.4 1024 2.85 1.4 1026 2.30
1.6 1024 3.29 1.6 1026 2.65
1.8 1024 3.73 1.8 1026 3.01
2.0 1024 4.17 2.0 1026 3.38
1.6 1028 2.02 2.2 1026 3.74
1.8 1028 2.30 2.4 1026 4.11
2.0 1028 2.58 2.2 1030 1.98
2.2 1028 2.87 2.4 1030 2.19
2.4 1028 3.16 2.6 1030 2.42
2.6 1028 3.45 2.8 1030 2.63
2.8 1028 3.74 3.0 1030 2.84
3.0 1028 4.03

where Mw(A, Z) represents the Weizsacker expression given by equation (5). With
this we calculate the neutron binding energy as:

Qn(A, Z) = Bn(A + 1, Z) = c2[M(A, Z) + Mn − M(A + 1, Z)]. (7)

We note that Qn for nucleus (A, Z) is equal for the neutron binding energy Bn (taken
positive) in nucleus (A + 1, Z). These functions of N and Z separately takes into
account the important effects on nuclear masses of:

• neutron and proton shell structure
• spheroidal quadrupole deformation of partially filled shells and
• pairing of neutrons and pairing of protons.

The quantities f (N) and g(Z) will be discontinuous functions at magic closed shell
numbers for N and Z respectively. The sign is taken negative so that f (N) and g(Z)

as positive quantities, decrease the mass and add to the stability of the nucleus.
We now obtain:

Qn(A, Z) = f (A, Z) + f ′(A − Z) (8)

putting M(A, Z) from equation (6) and using:

f ′(A − Z) = f ′(N) = df (N)/d(N) = f (A + 1 − Z) − f (A − Z). (9)

On simplification and on putting Z = A − N , we rewrite equation (8) as:

Qn(A, N) = f (A, N) + f ′(N).
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Figure 1. The average excess neutron binding energy vs. neutron number N , over that given
by the smooth Weizsacker atomic mass formula.

Figure 2. The average r-process path in the (A, Z) plane at all the temperature and density
conditions considered, showing the schematic view of the isotopes produced.

Here f ′(N) is the excess neutron binding energy to nuclei with a specified N over
that given by the smooth Weizsacker mass formula normalised to zero at the beginning
of the shell in which N lies. We have used the mass tables of Audi et al. (2003) and
for various N , the resulting average values have been plotted against N . Another form
of averaging is then affected by drawing a smooth curve through the points obtained
in this way and plotted in Fig. 1. These equations are then solved for fixed values of
Z, to obtain the corresponding values of A by trial and error, at different temperature
and density conditions which specify Qn in equation (8). The neutron capture paths
so obtained are then plotted in Fig. 2.
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5. Existence of chemical elements along the r-process path

In our classical condition we notice an element of mass 273 corresponding to atomic
number 115. Experimentally some new elements were synthesized at the Lawrence
Berkley Laboratory, e.g., elements with Z = 116, 118, etc. (Swiatecki et al. 2005).
Also theories have long predicted the island of stability for nuclei with approximately
114 protons and 184 neutrons. Thus we conclude that a nuclei with mass 273 is a
possibility. The seed nuclei in the neutrino driven wind are produced early in the
expansion by alpha-capture or by proton-capture processes. When the temperature and
density become low in a short dynamic time scale and the charged particle reactions
almost cease, the r-process starts from these seed nuclei. So we start our calculation
at 20Ca40 and obtain the neutron capture path beyond that.

We notice that at densities >1030 cm−3, the r-process chain does not show the ele-
ments as seen in data of Audi et al. (2003). As we try to obtain the elements at
lower densities in our analysis, we find them more prominently as we go from high to
low density site. Most of our observed elements are seen in the range of neutron num-
ber density 1020 cm−3 to 1024 cm−3 and temperature from 2.0 × 109 K to 3.0 × 109 K.
For example, at densities 1028 cm−3, 1026 cm−3, etc., the r-process chain does not give
us all the observable elements. But at condition of density 1020 cm−3 and temperature
T9 = 2.0, that path contains all the elements as was given in the experimental data of
Audi et al. (2003).

We tabulate some of the elements (experimental) obtained along the r-process path
as follows:

We note that the element 98Cf254 shown by the supernova light curves is found
in our classical astrophysical condition of temperature T9 = 1.9 and neutron num-
ber density nn = 1020 cm−3. We also note that the double magic nucleus 28Ni78

50 is
obtained at T9 = 1.0 and nn = 1020 cm−3; T9 = 1.1 and nn = 1022 cm−3; T9 = 1.2
and nn = 1024 cm−3; T9 = 1.4 and nn = 1026 cm−3; T9 = 2.0 and nn = 1028 cm−3;
all of these conditions correspond to Qn value ≈ 2.5 Mev. Another double magic

Table 2. Chemical elements at the r-process site.

Element T9(109 K) nn(cm−3)

56Ba137 2.5 1020

82Pb207 2.5 1022

92U236 3.0 1022

98Cf254 1.9 1020

For double magic nuclei

28Ni78
50 1.0 1020

1.1 1022

1.2 1024

1.4 1026

2.0 1028

50Sn132
82 1.7 1020

1.9 1022
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nucleus 50Sn132
82 is found in our analysis at T9 = 1.7 and nn = 1020 cm−3; T9 = 1.9

and nn = 1022 cm−3; these correspond to Qn value ≈ 4.5 Mev.

6. Discussion and conclusion

Whenever and however the r-process operates, it appears to be very uniform and well
confined in astrophysical parameter space. The temperature, density and neutron flux
at r-process sites vary over a small range. This means that only a small minority of
type II supernovae produces r-process elements. The beta decay lifetimes, separation
energy, neutron flux, the temperature range, the equilibrium chain and collapse time, all
are built in to the equations, which are, then numerically solved to determine the chain
for various separation energies. The neutrino winds drive out the r-process elements
which then decay to the lines nearer to the beta-stable valley, and, they are ready for
comparison with observation.

We have studied the r-process path at various temperatures ranging from 1.0×109 K
to 3.0 × 109 K and neutron number densities ranging from 1020 cm−3 to 1030 cm−3.
We mostly concentrate our analysis at energies greater than 2 Mev as this is the condi-
tion prevailing in the supernova envelopes and neutron capture occurs during the later
expanding stage. We have used the mass table of Audi et al. (2003) for the calculation
of the average excess neutron binding energy which is obtained by the normalization
at the magic neutron numbers 20, 50, 82, 126. It has been found that a nucleus is stable
if the number of neutrons or protons in it is equal to the magic number, and it can-
not capture further neutrons because the shells are closed and they cannot contain an
extra neutron. With the subsequent addition of neutrons at fixed Z, correspondingly
the binding falls and ultimately falls to zero. At this point, the nucleus undergoes a
β-decay and gets converted to the next element. This r-process path is shown in Fig. 2
by corresponding relations between Z and A.

As the high density conditions do not show much of the experimentally observed
elements, we propose that the heavy elements which must have been produced during
the extreme condition of supernova explosion instantly undergo photo-disintegration at
the high density and temperature situation. Only in the later expansion stages after the
explosion, where the neutron density supposedly falls, the r-process nucleosynthesis
produces the heavy elements which subsequently β-decays and the r-process path
forms. We conclude that the heavy elements were created after supernova explosion and
in the later expansion stages they were distributed all over the universe. In supernova
during the expansion stage if the ejected matter flow reaches the waiting point nuclei
associated with the magic neutron numbers at rather small radii above the neutron
star, neutrino induced charged current reactions can compete with the β-decays of the
longest lived waiting point nuclei and thus speed up the matter flow to heavier nuclei.
We tried to get our abundances with respect to all the nuclei whose β-decay lifetimes
are considerably higher. We conclude that our theoretical model will be successful in
providing new light to solve some problems in the r-process and the corresponding
build-up to heavier nuclei.
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Abstract. We have investigated the out of plane equilibrium points of
a passive micron size particle and their stability in the field of radiating
binary stellar systems Krüger-60, RW -Monocerotis within the framework
of photo-gravitational circular restricted three-body problem. We find that
the out of plane equilibrium points (Li, i = 6, 7, 8, 9) may exist for range
of β1 (ratio of radiation to gravitational force of the massive component)
values for these binary systems in the presence of Poynting–Robertson drag
(hereafter PR-drag). In the absence of PR-drag, we find that the motion of a
particle near the equilibrium points L6,7 is stable in both the binary systems
for a specific range of β1 values. The PR-drag is shown to cause instability
of the various out of plane equilibrium points in these binary systems.

Key words. Radiation—Poynting–Robertson drag—binary stellar
system—equilibrium points—stability.

1. Introduction

The photo-gravitational circular restricted three-body problem was first studied by
Radzievskii (1950, 1953). In this work, besides the coplanar libration points Li, i = 1
to 5, the effect of radiation was shown to result in the libration points L6,7 that exist in
a plane perpendicular to the orbital plane of the radiating primaries. Since then several
authors (cf. Chernikov 1970; Perezhogin 1976; Scheurman 1980; Simmons et al. 1985;
Ragos & Zagouras 1988; Murray 1994; Ragos & Zafiropoulos 1995; Ragos et al.
1995; Roman 2001; Kunitsyn & Chudayeva 2003; Kushvah & Ishwar 2004; Das et al.
2008a) extended the work to understand various issues related to the dynamics of a
particle around radiating primaries. However, majority of these works involve the use
of independent quantities q1 = 1 − β1 and q2 = 1 − β2, where βi corresponds to the
ratio of radiation pressure force to the gravitational force of i-th binary component.
Since βi does depend on the size, density of the particle and mass and luminosity of
the respective binary component, we apply a realistic relation connecting the para-
meters β1 and β2 and study the location and stability of out of plane equilibrium points
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of a micron size particle moving around a radiating binary stellar system. Incorpo-
rating the PR-drag effect, we observe that the libration points L6,7 exist for certain
range of values of β1 for the binary systems Krüger-60 and RW -Monocerotis. Further,
certain β1 values exist for which it is also possible to have four libration points, i.e.,
Li , i = 6, 7, 8, 9 in these binary stars. Using linear stability analysis, it is observed
that the stability of motion around any of these points depends on the parameter β1

and β2 involving physical parameters, i.e., mass and luminosity of the given binary
system. For the binary stellar systems considered here, we find that all such equilibrium
points are unstable. However, in the absence of PR-drag we observe that it is possible
to have linearly stable motion around L6,7 for certain β1 values in both the binary
systems.

2. The location and stability of out of plane equilibrium points

Following Ragos & Zafiropoulos (1995) and Ragos et al. (1995) the equation of
motion of an infinitesimal mass moving in the radiation and gravitational field of
the binary system, in a rotating barycentric co-ordinate system (cf. Szebeheley 1967;
Hénon 1983), could be written as:

Ẍ − 2Ẏ = �x, Ÿ + 2Ẋ = �y, Z̈ = �z, (1)

where

�x = X − Q1(X + μ)

r3
1

− Q2(X + μ − 1)

r3
2

− W1

r2
1

[
X + μ

r2
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((X + μ)Ẋ + Y Ẏ + ZŻ) + Ẋ − Y

]
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r2
2
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μ = M2

M1 + M2
, Q1 = q1(1 − μ), Q2 = q2μ, (5)

W1 = (1 − q1)(1 − μ)

Cd

, W2 = (1 − q2)μ

Cd

, (6)

r2
1 = (X + μ)2 + Y 2 + Z2, r2

2 = (X + μ − 1)2 + Y 2 + Z2. (7)

Here, M1 and M2 refer to masses of the respective binary component; Cd = c/vin

corresponds to the dimensionless velocity of light and depends on the physical masses
of primaries and distance between them; q1,2 = 1 − β1,2 corresponds to radiation
parameters from the respective primaries; r1 and r2 correspond to the distances between
the third body and primaries. Further, βi corresponds to the ratio of force due to
radiation and the gravitational force of the i-th binary component (cf. Das et al. 2008b)
from the i-th binary component. It is important to note that for solar dust particles
less than a μm comprising spherical silicate BPCA, carbon BPCA, silicate compact,
asteroidal dust, young and cometary dust grains, β may vary in the range ∼10−2–5.0
(cf. Wilck & Mann 1996; Krivov et al. 1998; Kimura et al. 2002). Therefore in a real
situation, it is possible to have βi ≥ 1. However, there exists a relation:

β2 = β1
L2

L1

M1

M2
, (8)

which connects the radiation parameters of respective binary components in terms
of their luminosities and masses. We use the above relation to fix the value of the
parameter β2 in terms of the mass and luminosity of the binary components for a
given β1 > 1. Therefore, the quantities q1 and q2 are not independent. It may be noted
that several authors (cf. Ragos & Zafiropoulos 1995; Ragos et al. 1995 and references
quoted therein) have used the radiation parameters q1 and q2 as independent. It is in
this sense their results are of limited applicability to the motion of a particle in stellar
binary systems in general. Besides the classical coplanar equilibrium points (cf. Ragos
& Zafiropoulos 1995; Das et al. 2008b), it is possible to have out of plane equilibrium
points exclusively due to radiation from binary components. Such points do not have
any classical analogue. In the following, we discuss the effect of radiation on the
location and stability of possible equilibrium points in two steps. First only the major
radial component of the pressure force is considered so that the problem is reduced to
that of a central force only (cf. Radzievskii 1950, 1953). In fact this approach to the
problem is already an approximate one: for particles with velocity v, terms of order v/c

and higher in the general radiation force term are neglected. In fact, due to radiation, the
radiation force F on a particle may be written as F = Fp + FPR (cf. Robertson 1937)
where FPR is the Poynting–Robertson drag and corresponds to a first order term in v/c.
For a 1 μm dust particle at a distance of 1 AU from sun FPR/FP ∼ 10−4 and therefore
significant changes in the location of various equilibrium points are unlikely by the
inclusion of FPR terms. However, the inclusion of FPR drag term change the nature of
problem from purely a central force to a dissipative one. Therefore, in the second step,
we incorporate FPR term as well and show that the various out-of plane equilibrium
points of the binary system become unstable.
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2.1 Location and stability of equilibrium points in the absence of PR-drag

In the absence of PR-drag, the stationary solutions of equation (1), for the case Z �= 0,
results in the following conditions:

X0 − Q1(X0 + μ)

r3
10

− Q2(X0 + μ − 1)

r3
20

= 0, (9)

Y0 = 0, (10)
[
Q1

r3
10

+ Q2

r3
20

]
= 0, (11)

where

r2
10 = (X0 + μ)2 + Z2

0, r2
20 = (X0 + μ − 1)2 + Z2

0 (12)

and the subscript ‘0’ is used to denote the equilibrium values. Since Z0 �= 0, we
observe that equations (9)–(11) are satisfied if:

X0 = Q1

r3
10

= −Q2

r3
20

. (13)

Obviously the last equation results in either Q1 < 0, Q2 > 0 or Q1 > 0, Q2 < 0,
i.e., Q1Q2 < 0. In view of the relation q1,2 = 1 − β1,2, we observe that Q1Q2 < 0
implies that either β1 > 1, β2 < 1 or β1 < 1, β2 > 1. Since for particles around
0.1 μm it is possible to have β1 > 1, we find the possibilities of having (1 − β1) < 0
and (1 − β2) > 0 in some binary stellar system.

On elimination of Z0, we may rewrite equation (13) as:

�(X0) = 8X5
0 + 12(2μ − 1)X4

0 + 6(2μ − 1)2X3
0

+ (2μ − 1)3X2
0 − (Q

2/3
1 − Q

2/3
2 )3 = 0. (14)

The solution of equation (14) for real X0 along with real Z0 obtained from:

Z0 = ±
[(

Q1

X0

)2/3

− (X0 + μ)2

]1/2

, (15)

using equation (12), provides the equilibrium point in the X–Z plane.
It is readily observed that X0 = (1 − 2μ)/2 is a solution of equation (14) in case

|Q1| = |Q2|. Further, from the plot of �(X0) vs. X0 (cf. Fig. 1), we observe that for
certain β1 value, if |Q1| < |Q2| or |Q1| > |Q2|, only one real solution of equation (14)
occurs in the region X0 < 0 and X0 > 0, respectively for Krüger-60 (curves 1 and 3 of
Fig. 1). The equilibrium point (X0, 0, ±Z0) lying in the region X0 < 0 and referred to
as L6,7 (cf. Radzievskii 1953) was shown to exist for a range of values of β1 for binary
system RW -Monocerotis and Krüger-60 (Das et al. 2008b). However, it is interesting
to observe that for certain β1 values three possible real root occurs (curve 2, Fig. 1).
Of these three roots, one lies in the region X0 < 0, and two roots in the region X0 > 0.
For such β1 values, the root of equation (14) lying in the region X0 < 0 results in
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Figure 1. Variation of �(X0) with X0 in Krüger-60.

two equilibrium points L6,7 while the two roots in the region X0 > 0 provide four
equilibrium points L6, L7, L8 and L9 for the two binary systems considered here.
Earlier Lukyanov (1984) and Simmons et al. (1985) reported the possible existence
of such equilibrium points in the general photo-gravitational restricted circular three-
body problem in the absence of PR-drag. It may be noted that the application of
equation (8) as a relation between βi’s (i = 1, 2) results in the location of various
equilibrium points dependent on a single parameter β1 rather than two independent
parameters β1 and β2 considered earlier by Lukyanov (1984), Simmons et al. (1985)
and Ragos & Zagouras (1988). Further since β2 depends not only on β1 but also on the
physical parameters like mass and luminosity of the binary components, the present
computational results of Fig. 2 showing the relationship between various components
of L6 and L8 along with their variation with β1 are expected to be more realistic for
Krüger-60 and RW -Monocerotis.

In this work we have confined ourselves to linear stability analysis. The characteristic
equation used for computing the eigenvalues for a given binary system is same as in
Das et al. (2008b). Table 1 listing the real and imaginary components of the charac-
teristic equation for various β1 values for both the binary system clearly shows the
possibility of having stable motion around L6,7 in the domain X0 > 0 (as all the eigen
values are purely imaginary). However, the motion around L6,7 in the domain X0 < 0
is unstable. Further for all β1 values considered, the motion around L8,9 is also found
to be unstable in these binary systems.

2.2 Location and stability of the out of plane equilibrium points
in the presence of PR-drag

Following Ragos et al. (1995), we find the out of plane equilibrium points in the
presence of PR-drag as solution of the following equations.
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Figure 2. (a), (e) Variation of L6x
with β1 in the region X0 < 0, (b), (f) variation of L6z

with
L6x

in the region X0 < 0, (c), (g) variation of L8x
and L6x

with β1 in the region X0 > 0, (d)–(h)
variation of L8z

and L6z
with L6x

in the region X0 > 0 for Krüger-60 and RW -Monocerotis,
respectively.

Table 1. Variation of eigenvalues of L6,7 with β1 for X0 > 0.

Binary β1 λ1 λ2 λ3

RW-Monocerotis 1.162 (0, 0.36217024) (0, 0.84961841) (0, 1.0709721)
1.164 (0, 0.42888167) (0, 0.76875324) (0, 1.1068328)
1.166 (0, 0.50137373) (0, 0.68684667) (0, 1.1299850)

Krüger-60 1.171 (0, 0.19666655) (0, 0.92009171) (0, 1.0558189)
1.177 (0, 0.29345436) (0, 0.79985195) (0, 1.1287698)
1.183 (0, 0.37515521) (0, 0.70016981) (0, 1.1700516)
1.187 (0, 0.45360428) (0, 0.61042658) (0, 1.1923181)

X0 − Q1(X + μ)

r3
1

− Q2(X0 + μ − 1)

r3
2

+
[
W1

r2
1

+ W2

r2
2

]
Y0 = 0, (16)

[
1 − Q1

r3
1

− Q2

r3
2

]
Y0 − W1(X0 + μ)

r2
1

− W2(X0 + μ − 1)

r2
2

= 0, (17)

Q1

r3
1

+ Q2

r3
2

= 0. (18)
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Figure 3. (a), (d) Variation of L6x
with β1; (b), (e) variation of L6y

with L6x
; (c), (f) variation

of L6z
with L6x

in the region X < 0 for Krüger-60 and RW -Monocerotis, respectively.

The foregoing equations could be easily obtained by considering Ẍ = Ÿ = Z̈ = 0,
Ẋ = Ẏ = Ż = 0 in equation (1). Using the last equation, we note that Q1Q2 < 0
or q1q2 < 0 must be satisfied for the existence of the out of plane equilibrium points.
Further, it may be observed that the presence of PR-drag results in the possibility of
having Y �= 0, unlike the situation discussed in section 2.2. From equations (17)–(19),
we find that:

P(r1) = a6r
6
1 + a4r

4
1 + a2r

2
1 + a1r1 + a0 = 0, (19)

X0 = 1

2

[
1 −

(
Q2

Q1

)2/3
]

r2
1 + 1

2
− μ, (20)

Y0 = 1

2

[
W1 − W2

(
Q1

Q2

)2/3
]

r−2
1 ,

+ 1

2

[
W1 − W2 −

(
W1

(
Q2

Q1

)2/3

− W2

(
Q1

Q2

)2/3
)]

, (21)

Z0 = ±
√

r2
1 − (X0 + μ)2 − Y 2. (22)

Using equation (8) and the foregoing equations with coefficients ai, i = 0, 1, 2, 4, 6
as defined in Ragos et al. (1995), we have computed the co-ordinates X0, Y0, and Z0

for the out of plane equilibrium points of a binary system. In the presence of PR-drag
also we observe that a critical β1 exists for which it is possible to have two equilibrium
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Figure 4. (a), (d) Variation of L6x
and L8x

with β1; (b), (e) variation of L8y
and L6y

with L6x
;

(c), (f) variation of L8z
and L6z

with L6x
in the region X > 0 for Krüger-60 and RW -Monocerotis,

respectively.

points L6,7 in the region X0 < 0 and four equilibrium points, i.e., L6,7,8,9 in the region
X > 0. Figure 3(a) clearly shows that L6x

increases with increase in β1 in the region
X < 0. In such a region, for Krüger-60, an increase in X0 is accompanied by a decrease
in Y while there is an increase in the Z values (Fig. 3b-c). Similar results are obtained
for RW -Monocerotis (Fig. 3d–f). In the region X > 0, for Krüger-60 an increase in
β1 results in a decrease in the values of L8x

while L6x
increases (Fig. 4a). Further, it is

observed that with increase in L6x
, L8y

and L6y
increases while L8z

and L6z
decrease

(Fig. 4b–c) in Krüger-60. For the binary system RW -Monocerotis we observe similar
trends in variation of L6 and L8 co-ordinates (Fig. 4d–f).

The inclusion of PR-drag induces instability in motion. This is evident from the fact
that all the roots of the characteristic equation for equilibrium points L6,7,8,9 in entire
domain considered here have finite (non-zero) real and imaginary components.

3. Results

The problem concerning the location of out of plane equilibrium points in the photo-
gravitational restricted three-body problem has been investigated. We have incorpo-
rated the effect of PR-drag in our analysis. Unlike the work of Ragos et al. (1995) (and
references quoted therein), we considered a realistic relation connecting the parame-
ters β1 and β2 with the physical parameters such as mass and luminosity of the binary
components and investigated the locations of equilibrium points and their stability
using linear analysis for the binary systems Krüger-60 and RW -Monocerotis. In the
absence of PR-drag unlike Roman (2001), we observe that the equilibrium points L6,7

exist for several values of β1 > 1 for X0 < 0 in both the binary systems in the X–Z
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plane. We also find that for |Q1| < |Q2|, there exists a range of β1 for which it is
also possible to have four equilibrium points L6, L7, L8 and L9 for X0 > 0 in both
the binaries. Increase in β1 results in an increase in L6x

while L8x
tends to decrease

in the region X0 > 0 for both the binary systems in the absence of PR-drag. Further
in the absence of PR-drag in both binary systems the components L8z

and L6z
show a

decreasing trend with increase in L8x
and L6x

respectively. Similar trends are observed
when PR-drag is incorporated in the analysis. However, inclusion of PR-drag in the
analysis results in a small but finite y-component to the possible equilibrium points of
the system. It is observed that both L8y

and L6y
increase with increase in L8x

and L6x
,

respectively in both the binaries.
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Abstract. The present work is concerned with the two-body problem
with varying mass in case of isotropic mass loss from both components of
the binary systems. The law of mass variation used gives rise to a perturbed
Keplerian problem depending on two small parameters. The problem is
treated analytically in the Hamiltonian frame-work and the equations of
motion are integrated using the Lie series developed and applied, separately
by Delva (1984) and Hanslmeier (1984). A second order theory of the two
bodies eject mass is constructed, returning the terms of the rate of change
of mass up to second order in the small parameters of the problem.

Key words. Mass loss—binary systems—two-body problem—
perturbations.

1. Introduction

The two-body problem with variable mass is one of long-standing; its origin going
back to the middle of 19th century. However, some confusion has persisted as to the
dynamical equations which have to be used. Solutions of celestial mechanics problems
for several variable mass bodies have been analytically tried and solved for two basic
situations: the general two-body problem and the restricted three-body problem, with
many modifications. The mathematical tool applied to these two basic problems usually
relies upon the classical equations of motion in gravitational field with additional
formal terms due to the variability of the gravitating masses. The motion is studied
with the already classical procedure that interprets these terms as distinct fictitious
perturbations applied to the unperturbed motion of stationary masses. There exists a
related inverse procedure: interpretation of the actual perturbed motion as a formally
unperturbed one, in the gravitational field generated by a variable effective mass. In this
paper, we limit ourselves to the first basic problem (that of two variable-mass bodies).

2. History of the problem

The literature is full of research dealing with the problem of two-body with varying
mass, and it will be beneficial to sketch some of these most important works.

Jeans (1924) was the first to pose this as an astrophysical problem basing his studies
on the relationship between luminosity and star mass developed by Eddington (1924).

187
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MacMillan (1925) introduced the detailed solution for the equation of the relative
motion obtained by Mestscherskii.

Martin (1934) concluded that the eccentricity behaviour increases secularly if the
mass loss of the binary star is inversely proportional to a distance power between its
components.

Hadjidemetriou (1963) used Duboshin’s idea of a formal comparison between the
unperturbed equations in the Gylden–Meshcherskii problem and the perturbed Keple-
rian equations of motion in the gravitational field of a stationary mass with permanent
tangential perturbation to calculate the perturbation arising from the isotropic variation
of the mass of the system.

Mukhametkalieva (1987, 1988) investigated the behaviour of the eccentricity in
this problem based on a representation of the eccentricity as a function of time and a
periodic function of the true anomaly. Also, he obtained the Laplace integral for the
Gylden problem.

Mioc et al. (1988a, 1988b, 1988c, 1988d), in a series of papers, covered the energy
characteristics of motion in a two-body problem with variable mass.

Verhulst (1972, 1975), Hut & Verhulst (1976), Vinti (1977), Omarov & Omarkulov
(1982), Omarov (1991), Minglibaev (1988), Demchenko & Omarov (1984), and Idlis
& Omarov (1960) constructed analogous solutions to the Gylden problem for stationary
masses in the presence of environmental resistance and quasi-elastic forces with vari-
ous methods, including the Hamilton–Jacobi method. These works dealt with modeling
various systems of osculating elements, discussing the structures of the intermediate
motions, discussing the energy dissipation regimes combined with the influence of
the elastic force, searching for the integrable cases, and discussing the feasibility of
canonical transformation and Hamiltonian formalism including the case of noncon-
servative binary systems.

Dommangent (1963, 1964, 1981, 1982, 1997) published useful papers in which he
stated that a correlation between eccentricities and orbital periods exists, such that on
the average, a bigger eccentricity corresponds to a bigger period. Also, he suggested
that this correlation is related to a substantial mass loss in the binary star components.

Prieto & Docobo (1997a, 1997b) and Docobo et al. (1999) published a series of
papers in which they presented two approximate analytic solutions of the two-body
problem with slowly decreasing mass, using Deprit’s method of perturbations. They
used Jeans law which give rise to a perturbed Keplerian problem dependent on one
and two small parameters.

Andrade & Docobo (2002, 2003) analyzed the dynamics of binary systems with
time-dependent mass loss and periastron effect, i.e., a supposed enhanced mass loss
during periastron passage, by means of analytical and numerical techniques.

3. Different models of the mass loss

Since both the relative rate of mass change and the time intervals for this change must
be included into the equations of motion, here below some interesting models of the
rate of mass changes are addressed.

3.1 Mestscherskii models

Mestscherskii was the first to point out a specific case of the two-body problem with
varying mass which is integrable by introducing special space–time variables in which



Two-Body Problem with Slowly Varying Mass 189

the problem is reduced to the classical problem of two bodies (Polyakhova 1994; Prieto
& Docobo 1997a, 1997b).

These integrable cases correspond to three celebrated models by Mestscherskii for
the change in the total mass of the system.

μ1(t) = 1

a + αt
(1)

μ2(t) = 1√
a + αt

(2)

μ3(t) = 1√
a + αt + βt2

(3)

where a, α, β are certain constants and μi(t)(= m1(t) + m2(t)), i = 1, 2, 3 are
different models for the mass change.

3.2 Martin model

Martin (1934) from his work on double star systems with varying mass, reached to
this statement,

ṁ = −αmn

r2
(4)

where r is the value of radius vector between the two components of the system.
Hadjidemetriou (1966) addressed useful comments on the Martin model of varying

mass. These are:

• The dependence of the rate of mass loss on the distance between the two compo-
nents must be due to a tidal interaction, but since μ is the total mass of the system,
this law states that the tidal interaction is independent of the ratio of the masses
of the two components which does not seem realistic.

• The effect of one star on its mass-losing companion would most probably result
in a non-isotropic loss of mass; and consequently, the treatment of the problem
by usual methods is not valid.

• The tidal interaction is not likely to produce large velocities of ejection of mass,
so that the ejected particles may not escape from the system instead, full on the
other star.

For this reasons, such laws must be treated with great care and in close connection
with the mechanism the mass loss takes place.

3.3 Jeans models

Jeans (1924) was the first to pose law of varying mass as an astrophysical problem. He
based his studies on the theory developed by Eddington (mass-luminosity relation) by
generalized law of mass loss:

ṁ = −αmn (5)
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where α, n are real numbers, the first one is +ve approximate to zero and n varying
between 1.4 and 4.4. This law is called Eddington–Jeans law.

Taking n = 2, we have Mestscherskii first integrable case, while taking n = 3, we
have the last Mestscherskii case.

3.4 Andrade and Docobo models

Analyzing the dynamics of binary systems with time-dependent mass loss, the inter-
action between the two components must be taken into account. Andrade & Docobo
(2003) could suppose that, close to periastron there is an appreciable enhancement of
mass loss. This phenomenon will be called the periastron effect, and it will be more
noticeable the greater the eccentricity and the smaller the minimum distance between
the two stars.

Of the whole set of laws that take into account periastron effect by means of its
dependence on distance, only some of them give rise to new behaviour in the evolution
of the orbital elements, such as secular variations of eccentricity.

In these models they studied the following time- and distance-dependent mass-loss
law:

μ̇(t; r; pθ) = μ̇(t) − β
pθ

r2
(6)

where the first term represent time-dependent mass loss, and the last one introduces
the periastron effect, where r is the distance between the two components, pθ is the
total angular momentum and β is another small parameter close to zero.

4. Perturbation technique

In many cases in celestial mechanics, the series development of the disturbing function
is not easily treated and is complicated. To avoid this difficulty we use an alternative
approach (Delva 1984; Hanslmeier 1984) in which the procedure can be performed
with an operator. A special linear differential operator, the Lie operator, produces a
Lie series. The convergence of the series is the same as for Taylor series, since the
series is only another analytical form of the Taylor series. In addition, we can change
the step size easily (if necessary).

Let H(x, y, px, py, t) be the Hamiltonian function, x, y be the co-ordinates, px, py

be the momenta, and t be the time. Then the equations of motion are:

ẋ = dx

dt
= ∂H

∂px

ṗx = dpx

dt
= −∂H

∂x
,

ẏ = dy

dt
= ∂H

∂py

ṗy = dpy

dt
= −∂H

∂y
.

The linear Lie operator has the general form:

D = dx

dt

∂

∂x
+ dy

dt

∂

∂y
+ dpx

dt

∂

∂px

+ dpy

dt

∂

∂py

+ ∂

∂t
(7)
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and the solution �x(x, y, px, py, t), �y(x, y, px, py, t), →px (x, y, px, py, t), and→py (x, y, px, py, t) are then given by the Lie series:

�x(x, y, px, py, t) = [{exp(t − t0)D}x]�x=−→x0

=
∑

j=0

[Dj �x]−→x0

(t − t0)
j

j !
(8)

�y(x, y, px, py, t) = [{exp(t − t0)D}y]�y=−→y0

=
∑

j=0

[Dj �y]−→y0

(t − t0)
j

j !
(9)

→px (x, y, px, py, ) = [{exp(t − t0)D}px]−→px =−→px0

=
∑

j=0

[Dj →px ]−→px0

(t − t0)
j

j !
(10)

→py (x, y, px, py, t) = [{exp(t − t0)D}py]−→py =−→py0

=
∑

j=0

[Dj →py ]−→py0

(t − t0)
j

j !
(11)

where Dj �x, Dj �y, Dj →px , and Dj →py are to be evaluated for the initial condi-
tions →x0 (x0, y0, px0, py0, t0),

→y0 (x0, y0, px0, py0, t0),
−→px0(x0, y0, px0, py0, t0), and−→py0(x0, y0, px0, py0, t0).

5. Hamiltonian

The Hamiltonian is constructed in terms of Delaunay’s variables as:

K ≡ K(l, L, G; t) = −1

2

μ2

L2
+ μ̇

μ
Le sin E (12)

Equation (12) was already obtained by Deprit (1983), where H is the Hamiltonian of
the two-body problem.

The equations of motion can be analytically integrated up to the second order of
perturbation using the Deprit’s method (1969) or Kamel method (1969).

We need first to expand the Hamiltonian function (12) in a small parameter ε using
Jeans law of mass:

ṁk = −αkm
n(k)
k , k = 1, 2 (13)

For ε = 0, the Keplerian case would be obtained.
It seems that the parameter ε should be related to the coefficient αk which appears

in the Jeans law of mass variation. We will simply choose ε as nondimensional value
of αk. This choice also justifies the application of the method as far as the second order
only, since αk is very small and higher order would not contribute significantly. Let
the total mass of the binary system be given by μ = m1 + m2.
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Expanding the function μ(t) in a Taylor series yields:

μ = μ0 − (α1m
n(1)
10 + α2m

n(2)
20 )(t − t0)

+ 1

2
(α2

1n(1)m
2n(1)−1
10 + α2

2n(2)m
2n(2)−1
20 )(t − t0)

2 (14)

where m10, m20 are the values of mass for each component in certain initial instant t0.
The Hamiltonian can now be rewritten in expandable form as:

K = K0 +
2∑

n=1

2∑

k=1

αn
k

n!
Knk

− α1α2m
n(1)
10 m

n(2)
20

{
(t − t0)

2

L2
+ 2

μ2
0

(t − t0)eL sin E

}
(15)

with

K0 = − μ2
0

2L2

K11 = m
n(1)
10

{
μ0

L2
(t − t0) − 1

μ0
eL sin E

}

K12 = m
n(2)
20

{
μ0

L2
(t − t0) − 1

μ0
eL sin E

}

K21 = −m
2n(1)−1
10

{
(n(1)μ0 + m10)

L2
(t − t0)

2 + 2m10

μ2
0

(t − t0)eL sin E

}

K22 = −m
2n(2)−1
20

{
(n(2)μ0 + m20)

L2
(t − t0)

2 + 2m20

μ2
0

(t − t0)eL sin E

}

where K0 represents the Keplerian part of the problem, K11, K12 represent the first
order contributions that come from the first and second body mass loss, K21, K22

represent the second order contributions, while the term factored by α1α2 represents
the coupling effect between the two bodies.

Introduce Xi = αi/α, i = 1, 2.
The Hamiltonian can now be rewritten as:

K = − μ2
0

2L2
+

2∑

s=1

αs

s!

{
ζ̃s(L, G)τ s−1 sin E + τ sη̃s(L)

}
(16)

where

ζ̃s(L, G) = (
s + �2(s−1))eL

η̃s(L) = (�s + �s−1)

L2

τ = t − t0
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with

�1 = μ0(X1m
n(1)
10 + X2m

n(2)
20 )

�2 = −μ0(n(1)X 2
1 m

2n(1)−1
10 + n(2)X 2

2 m
2n(2)−1
20 )

+ X 2
1 m

2n(1)
10 + X 2

2 m
2n(2)
20


1 = − 1

μ0
(X1m

n(1)
10 + X2m

n(2)
20 )


2 = − 2

μ2
0

(X 2
1 m

2n(1)
10 + X 2

2 m
2n(2)
20 )

�1 = −2X1X2m
n(1)
10 m

n(2)
20

�2 = − 4

μ2
0

X1X2m
n(1)
10 m

n(2)
20

�0 = 0.

6. Solution of the problem

The non-vanishing final expressions of the variation in the orbital elements can be
written as:

l̇ = m2
0

L3
+

2∑

s=1

αs

s!
τ s−1

{
ζ̃s,L sin E + a

2r

G2

eL3
ζ̃s sin 2E + τ η̃s,L

}
(17)

ġ =
2∑

s=1

αs

s!
τ s−1

{
ζ̃s,G sin E − a

2r

G

eL2
ζ̃s sin 2E

}
(18)

L̇ = −
2∑

s=1

αs

s!
τ s−1

{a

r
ζ̃s cos E

}
(19)

where

ζ̃s,L = ∂ζ̃s

∂L
= 1

e
(
s + �2(s−1))

ζ̃s,G = ∂ζ̃s

∂G
= − G

eL
(
s + �2(s−1))

η̃s,L = ∂η̃s

∂L
= − 2

L3
(�s + �s−1).

Since only the mutual gravitational attraction is considered and the mass lost by one
body of the system is transferred to its companion, the total mass of the system is kept
constant. This turns a constant mean motion ñ.
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The linear Lie operator D, in terms of the Delaunay elements, has the general form:

D = dl

dt

∂

∂l
+ dg

dt

∂

∂g
+ dL

dt

∂

∂L
+ dG

dt

∂

∂G
+ ∂

∂t
.

Applying the operator D to l, g, L, G, and t yields:

Dl = dl

dt
+ ∂l

∂t
= l̇ + ñ (20)

Dg = dg

dt
= ġ (21)

DL = dL

dt
= L̇ (22)

DG = dG

dt
= 0 (23)

Dt = 1. (24)

The solutions �l(l, g, L, G, t), �g(l, g, L, G, t), �L(l, g, L, G, t), and �G(l, g, L, G, t)

are then given in terms of the Lie series as:

�l(l, g, L, G, t) =
∑

j=0

[Dj�l]−→l0
(t − t0)

j

j !
(25)

�g(l, g, L, G, t) =
∑

j=0

[Dj �g]−→g0

(t − t0)
j

j !
(26)

�L(l, g, L, G, t) =
∑

j=0

[Dj �L]−→L0

(t − t0)
j

j !
(27)

�G(l, g, L, G, t) =
∑

j=0

[Dj �G]−→G0

(t − t0)
j

j !
(28)

where Dj�l, Dj �g, Dj �L, and Dj �G are to be evaluated for the initial condi-
tion

→
l0 (l0, g0, L0, G0, t0), →g0 (l0, g0, L0, G0, t0),

→
L0(l0, g0, L0, G0, t0), and→

G0(l0, g0, L0, G0, t0). To find the terms of the series, it will be necessary to calculate
the multiple action of D to the variables l, g, L, G, and t . The single action to l, g, L,
and G produces:

Dx = x ′, x = (l, g, L, G) (29)

and hence, the multiple action gives:

Djx = Dj−1x ′, j ≥ 1.
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6.1 The series for l

The double action of the Lie operator, D on the mean anomaly l can be computed as:

D2l =
(

dl

dt

∂

∂l
+ dg

dt

∂

∂g
+ dL

dt

∂

∂L
+ dG

dt

∂

∂G
+ ∂

∂t

)
[l̇ + ñ] (30)

Setting

ζ̃s,LL = −(
s + �2(s−1))
G2

e3L3

η̃s,LL = 6

L4
(�s + �s−1)

equation (30) can be written as:

D2l =
5∑

n=0

5∑

m=0

[
α

(a

r

)m W l
nm cos nE + α2

{[(a

r

)m Y l
nm + S l

n

]
sin nE

+ τ
(a

r

)m Z l
nm cos nE

}]
(31)

where the non-vanishing coefficients are:

W l
11 =

(
m2

0

L3

) [
ζ̃1,L + 3ζ̃1

L

]

W l
13 = −m2

0G
2

4L6
ζ̃1

W l
22 = m2

0G
2

eL6
ζ̃1

W l
33 = m2

0G
2

4L6
ζ̃1

S l
1 = 1

2
ζ̃2,L

Y l
12 = − 3G2

4eL3
ζ̃1ζ̃1,L + G2

4e3L4
(1 + 2e2)ζ̃ 2

1

Y l
13 = − G2

16L3
ζ̃1ζ̃1,L

Y l
15 = μG4

4eL8
ζ̃ 2

1

Y l
21 = 1

2
ζ̃ 2

1,L − 1

2
ζ̃1ζ̃1,LL + G2

4eL3
ζ̃2

Y l
22 = 1

4

[
G2

eL3

]2

ζ̃ 2
1
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Y l
23 = − G2

4L3
ζ̃1ζ̃1,L + 1

4

[
G2

eL3

]2

ζ̃ 2
1

Y l
24 = μ

8L2

[
G2

eL3

]2

ζ̃ 2
1

Y l
25 = − μ

8L2

[
G2

eL3

]2

ζ̃ 2
1

Y l
32 = G2

eL3
ζ̃1ζ̃1,L

Y l
34 = G4

4eL6

[
1

2e2L

(
1 + 2e2

) − 1

]
ζ̃ 2

1

Y l
35 = G4

4eL6
ζ̃ 2

1

Y l
43 = G2

16L3
ζ̃1ζ̃1,L

Y l
45 = − μG4

8e2L8
ζ̃ 2

1

Bl
54 = G4

8eL6
ζ̃ 2

1

Z l
00 = η̃2,L

Z l
11 = η̃1,Lζ̃1,L − ζ̃1η̃1,LL + m2

0

2L3

(
ζ̃2,L + 3

L
ζ̃2

)

Z l
13 = −

(
G2

1

4L3
η̃1,Lζ̃ − m2

0

8L6
ζ̃2

)

Z l
22 = G2

eL3

[
ζ̃1η̃1,L + m2

0

2L3
ζ̃2

]

Z l
33 = G2

4L3

[
ζ̃1η̃1,L + m2

0

2L3
ζ̃2

]

which can be rewritten as:

D2l =
5∑

n=0

5∑

m=0

[
− 1

μ0
(α1m

n(1)
10 + α2m

n(2)
20 )Wl

nm cos nE + 1

μ2
0

(α1m
n(1)
10 + α2m

n(2)
20 )2

× {(Yl
nm + S

l
n) sin nE + τZ

l
nm cos nE} + 2

L3

{
α2

1[μ0n(1)m
2n(1)−1
10 − m

2n(1)
10 ]

+α2
2[μ0n(2)m

2n(2)−1
20 − m

2n(2)
20 ] + 4

μ2
0

α1α2m
n(1)
10 m

n(2)
20

}]
(32)
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where the non-vanishing coefficients are:

W
l
11 =

(
m2

0

L3

) [
1

e
+ 3e

]

W
l
13 = −m2

0G
2e

4L5

W
l
22 = m2

0G
2

L5

W
l
33 = m2

0G
2e

4L5

S
l
1 = −1

e

Y
l
12 = − 3G2

4eL2
+ G2

4eL2
(1 + 2e2)

Y
l
13 = − G2

16L2

Y
l
15 = μG4e

4L6

Y
l
21 = 1

2e2
+ 1

2

G2

e2L2
− G2

2L2

Y
l
22 = G4

4L4

Y
l
23 = −G2e2

4L2

Y
l
24 = μG4

8L6

Y
l
25 = −μG4

8L6

Y
l
32 = G2

eL2

Y
l
34 = G4e

4L4

[
1

2e2L
(1 + 2e2) − 1

]

Y
l
35 = G4e

4L4

Y
l
43 = G2

16L2

Y
l
45 = −μG4

8L6
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Y
l
54 = G4e

8L4

Z
l
11 = 1

L2

[
2μ2

0

eL
+ 6eμ2

0 − m2
0

L

(
1

e
+ 3e

)]

Z
l
13 = − e

2L5

(
μ2

0G
2 + m2

0

2

)

Z
l
22 = G2

L5
[2μ2

0 − m2
0]

Z
l
33 = G2e

4L5
[2μ2

0 − m2
0].

Then the solution

l(t) = [l]−→l0 + [Dl]−→l0 (t − t0) + [D2l]−→l0
(t − t0)

2

2

= [l]−→l0 + [l̇ + ñ]−→l0 (t − t0) + [D2l]−→l0
(t − t0)

2

2
.

(33)

6.2 The series for g

The double action of the Lie operator, D on argument of periapsis g can be computed
as:

D2g =
(

dl

dt

∂

∂l
+ dg

dt

∂

∂g
+ dL

dt

∂

∂L
+ dG

dt

∂

∂G
+ ∂

∂t

)
[ġ] (34)

setting

ζ̃s,GL = (
s + �2(s−1))G

e3L2

equation (34) can be written as:

D2g =
5∑

n=0

6∑

m=0

[
α

(a

r

)m Wg
nm cos nE + α2

{[(a

r

)m Yg
nm + Sg

n

]
sin nE

+ τ
(a

r

)m Zg
nm cos nE

}]
(35)

where the non-vanishing coefficients are:

Wg

11 = m2
0

L3
ζ̃1,G

Wg

13 = m2
0G

4L5
ζ̃1

Wg

22 = −Gm2
0

eL5
ζ̃1
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Wg

33 = −m2
0G

4L5
ζ̃1

Yg

12 = G

2eL2

(
ζ̃1,Lζ̃1 + G

2L
ζ̃1ζ̃1,G

)

Yg

13 = G3

4e2L5
ζ̃1ζ̃1,G

Yg

14 = G3

16eL5
ζ̃ 2

1

Yg

15 = G3

8e3L6

(
1

e2L
(e2 + 1)ζ̃ 2

1 − ζ̃1ζ̃1,L

)

Yg

16 = μG4

4e2L9
ζ̃ 2

1

Sg

1 = ζ̃2,G

2

Yg

21 = 1

2

(
ζ̃1,Lζ̃1,G − ζ̃1,GLζ̃1 − G

2eL2
ζ̃2

)

Yg

23 = G

16L2
ζ̃1,Lζ̃1

Yg

32 = − G

4eL2

(
ζ̃1ζ̃1,L + 1

4e2L
(e2 + 1)ζ̃ 2

1

)

Yg

34 = G3

16eL5
ζ̃ 2

1

Yg

35 = − μG3

4eL7
ζ̃ 2

1

Yg

43 = − G

2L2

(
1

4
ζ̃1ζ̃1,L − G2

e2L3
ζ̃ 2

1

)

Yg

45 = − μG3

4e2L7
ζ̃ 2

1

Yg

54 = − G3

16eL5
ζ̃ 2

1

Zg

11 =
(

η̃1,Lζ̃1,G + m2
0

2L3
ζ̃2,G

)

Zg

13 = −
(

G

4L2
ζ̃1η̃1,L + m2

0G

8L5L3
ζ̃2

)

Zg

22 = − G

eL2

[
m2

0

2L3
ζ̃2 + ζ̃1η̃1,L

]
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Zg

33 = − G

4L2

[
m2

0

2L3
ζ̃2 + ζ̃1η̃1,L

]

which can be rewritten as:

D2g =
5∑

n=0

6∑

m=0

[
− 1

μ0
(α1m

n(1)
10 + α2m

n(2)
20 )Wg

nm cos nE + 1

μ2
0

(α1m
n(1)
10 + α2m

n(2)
20 )2

× (Yg
nm sin nE + τZ

g
nm cos nE)

]
(36)

where the non-vanishing coefficients are:

W
g

11 = −m2
0G

eL4

W
g

13 = m2
0Ge

4L4

W
g

22 = −Gm2
0

L4

W
g

33 = −m2
0Ge

4L4

Y
g

12 = G

2eL2

(
L − G2

2L

)

Y
g

13 = − G4

4e2L5

Y
g

14 = G3e

16L3

Y
g

15 = G3

8eL5

Y
g

16 = μG4

4L7

S
g

1 = G

eL

Y
g

21 = 1

2
G

(
1

L
− 1

e2L
− 1

)

Y
g

23 = G

16L

Y
g

32 = − G

4eL

(
1 + 1

4
(e2 + 1)

)

Y
g

34 = G3e

16L3
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Y
g

35 = −μG3e

4L5

Y
g

43 = − G

2L2

(
1

4
L − G2

eL

)

Y
g

45 = −μG3

4L5

Y
g

54 = − G3e

16L3

Z
g

11 =
(

−2μ2
0G

eL4
+ m2

0G

eL4

)

Z
g

13 = − eG

2L4

(
μ2

0 − m2
0

2

)

Z
g

22 = − G

eL2

[
−m2

0

L2
+ 2μ2

0e

L2

]

Z
g

33 = − Ge

4L4
[−m2

0 + 2μ2
0].

Then the solution

g(t) = [g]−→g0 + [Dg]−→g0 (t − t0) + [D2g]−→g0

(t − t0)
2

2

= [g]−→g0 + [ġ]−→l0 (t − t0)−→l0
(t − t0)

2

2
+ [D2g]→g0

(t − t0)
2

2
. (37)

6.3 The series for L

The double action of the Lie operator, D on momenta L can be computed as:

D2L =
(

dl

dt

∂

∂l
+ dg

dt

∂

∂g
+ dL

dt

∂

∂L
+ dG

dt

∂

∂G
+ ∂

∂t

)
[L̇] (38)

which can be written as:

D2L =
5∑

n=0

5∑

m=0

(a

r

)m

[αWL
nm sin nE + α2{YL

nm cos nE + τZL
nm sin nE}] (39)

where the non-vanishing coefficients are:

WL
12 = m2

0

L3
ζ̃1

WL
23 = m2

0e

2L3
ζ̃1

YL
02 = ζ̃1ζ̃1,L
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YL
04 = G2

8L3
ζ̃ 2

1 −
(a

r

)5 ζ̃ 2
1

2

G2

L3

μ

L2

YL
05 = −μG2

2L5
ζ̃ 2

1

YL
11 = − ζ̃2

2

YL
13 = e

4
ζ̃1ζ̃1,L − G2

4eL3

(
1 + 1

L2

)
ζ̃ 2

1

YL
15 = 3μG2

4eL5
ζ̃ 2

1

YL
22 = ζ̃1ζ̃1,L

YL
25 = −μG2

L5
ζ̃ 2

1

YL
33 =

[
e

4
ζ̃1ζ̃1,L + G2

4eL5
(L2 − 1)ζ̃ 2

1

]

YL
35 = μG2

4eL5
ζ̃ 2

1

YL
44 = − G2

8L3
ζ̃ 2

1

ZL
12 = m2

0

2L3
ζ̃2 + ζ̃1η̃1,L

ZL
23 = e

2

[
m2

0

2L3
ζ̃2 + ζ̃1η̃1,L

]

which can be rewritten as:

D2L =
5∑

n=0

5∑

m=0

[
− 1

μ0

(
α1m

n(1)
10 + α2m

n(2)
20

)
W

g
nm sin nE + 1

μ2
0

(α1m
n(1)
10 + α2m

n(2)
20 )2

× (Yg
nm cos nE + τZ

g
nm sin nE)

]
(40)

where the non-vanishing coefficients are:

W
L
12 = m2

0e

L2

W
L
23 = m2

0e
2

2L2

Y
L
02 = L

Y
L
04 = G2e2

8L
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Y
L
05 = −μG2e2

2L3

Y
L
11 = eL

Y
L
13 = eL

4
− G2e

4L

(
1 + 1

L2

)

Y
L
15 = 3μG2e

4L3

Y
L
22 = L

Y
L
25 = −μG2e2

L3

Y
L
33 = eL

4
+ G2e

4L3
(L2 − 1)

Y
L
35 = μ0G

2e

4L3

Y
L
44 = −G2e

8L

Z
L
12 = e

L2
(2μ2

0 − m2
0)

Z
L
23 = m2

0e
2

2L2
(2μ2

0 − m2
0).

Then the solution yields:

L(t) = [L]−→L0
+ [DL]→

L0
(t − t0) + [D2L]−→L0

(t − t0)
2

2

= [L]−→L0
+ [L̇]−→L0

(t − t0) + [D2L]−→L0

(t − t0)
2

2
.

(41)

6.4 The series for G

The double action of the Lie operator, D on momenta G equal to zero

G(t) = [G]−→G0
. (42)

7. Conclusion

The following concluding remarks and notes can be outlined:

• The ejection of mass from any body depends on many parameters, amongst the
most important of which are the central condensation (which means, more or less,
the degree of rigidity of the body) and the velocity of rotation which provides the
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external layers with the angular momentum that activates the process of ejection
of mass. But to simplify the model, we assumed that the rate of mass ejection
depends explicitly, solely on the mass of the body.

• Since the different models of variable mass assume that the mass loss takes place
isotropically, i.e., there is no preformed direction in the space, it is expected to
find the Hamiltonian free from dependence on the inclination. This reflects the
absence of H in the Hamiltonian of the problem. Therefore ḣ = 0 ⇒ h = const.

• Also, as the stars are assumed point masses, the Hamiltonian is free from orien-
tation angles (g, h). This means that G and H are kept constants.

• The effect of one body ejects mass on the other body is declared through the
appearance of the non-linear term factored by α1α2.
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